Modulhandbuch des Studiengangs

Mechatronik
Master of Science

des Fachbereichs Maschinenbau und Kunststofftechnik
der Hochschule Darmstadt – University of Applied Sciences

vom 25.04.2017
<table>
<thead>
<tr>
<th>Modulverzeichnis</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtmodule</td>
<td>4</td>
</tr>
<tr>
<td>Modul 1 Advanced Feedback Control</td>
<td>5</td>
</tr>
<tr>
<td>Modul 2 Brückenmodul MMT-BR</td>
<td>8</td>
</tr>
<tr>
<td>Modul 3 Integriertes Forschungsprojekt MT</td>
<td>10</td>
</tr>
<tr>
<td>Modul 4 Masterarbeit</td>
<td>12</td>
</tr>
<tr>
<td>Modul 5 Masterseminar</td>
<td>14</td>
</tr>
<tr>
<td>Modul 6 Mechatronik WP 1</td>
<td>16</td>
</tr>
<tr>
<td>Modul 7 Mechatronik WP 2</td>
<td>18</td>
</tr>
<tr>
<td>Modul 8 Model-based real-time simulation of mechatronic systems</td>
<td>20</td>
</tr>
<tr>
<td>Modul 9 Qualitätsmanagement</td>
<td>22</td>
</tr>
<tr>
<td>Modul 10 Requirements Engineering and Management</td>
<td>24</td>
</tr>
<tr>
<td>Modul 11 Strukturdynamik, Simulation und Validierung</td>
<td>27</td>
</tr>
<tr>
<td>Modul 12 SuK Begleitstudium</td>
<td>29</td>
</tr>
<tr>
<td>Wahlpflichtmodule Katalog MMT-MTWP</td>
<td>31</td>
</tr>
<tr>
<td>Modul 1 Integriertes Forschungsprojekt MT</td>
<td>32</td>
</tr>
<tr>
<td>Modul 2 Maschinenaustik</td>
<td>34</td>
</tr>
<tr>
<td>Modul 3 Mechatronische Fahrzeugsysteme</td>
<td>37</td>
</tr>
<tr>
<td>Modul 4 Numerische Modalanalyse</td>
<td>40</td>
</tr>
<tr>
<td>Modul 5 Technische Analyse und Optimierung</td>
<td>43</td>
</tr>
<tr>
<td>Wahlpflichtmodule Katalog MMT-BR</td>
<td>46</td>
</tr>
<tr>
<td>Modul 1 Modellbildung, Simulation und Identifikation</td>
<td>47</td>
</tr>
<tr>
<td>Modul 2 Starrkörperdynamik</td>
<td>49</td>
</tr>
<tr>
<td>Wahlpflichtmodule Katalog UOWP</td>
<td>51</td>
</tr>
<tr>
<td>Modul 1 Advanced Business Simulation</td>
<td>52</td>
</tr>
<tr>
<td>Modul 2 Betriebliches Ideen- und Innovationsmanagement</td>
<td>54</td>
</tr>
<tr>
<td>Modul 3 Controlling</td>
<td>56</td>
</tr>
<tr>
<td>Modul 4 Gewerblicher Rechtsschutz</td>
<td>58</td>
</tr>
<tr>
<td>Modul 5 Integriertes Forschungsprojekt IV</td>
<td>60</td>
</tr>
<tr>
<td>Modul 6 Kraft der Normung</td>
<td>62</td>
</tr>
<tr>
<td>Modul 7 Produktionsmanagement</td>
<td>64</td>
</tr>
<tr>
<td>Modul 8 Qualitätsmanagement</td>
<td>66</td>
</tr>
<tr>
<td>Modul 9 Technical Controlling</td>
<td>68</td>
</tr>
</tbody>
</table>
Pflichtmodule
Modul 1 Advanced Feedback Control

<table>
<thead>
<tr>
<th></th>
<th>Modulhandbuch des Studiengangs Mechatronik (M.Sc.) der Hochschule Darmstadt Seite 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Modulname
Advanced Feedback Control</td>
</tr>
<tr>
<td>1.1</td>
<td>Modulkurzbezeichnung
AFC</td>
</tr>
<tr>
<td>1.2</td>
<td>Art
Pflichtmodul</td>
</tr>
<tr>
<td>1.3</td>
<td>Lehrveranstaltungen
Adaptive and learning control (ALC.V)
Synthesis of dynamic systems using state-space models Praktikum (SDS.P)
Synthesis of dynamic systems using state-space models Vorlesung (SDS.V)</td>
</tr>
<tr>
<td>1.5</td>
<td>Modulverantwortliche Person
Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat</td>
</tr>
<tr>
<td>1.6</td>
<td>Weitere Lehrende
Weitere Lehrende nach aktueller Festlegung durch das Dekanat</td>
</tr>
<tr>
<td>1.7</td>
<td>Studiengangsniveau
Master</td>
</tr>
<tr>
<td>1.8</td>
<td>Lehrsprache
Deutsch oder Englisch nach Ankündigung durch das Dekanat</td>
</tr>
<tr>
<td>3</td>
<td>Ziele
Adaptive and learning control (ALC.V):
Lernziele Kompetenzen
Die Ziele des Moduls sind im Modulhandbuch Master Electrical Engineering and Information Technology beschrieben. Die Modulbeschreibung ist im Abschnitt "Fremdmodule" diesem Modulhandbuch beigefügt. Es gilt die jeweils aktuelle Modulbeschreibung der Ursprungsstudiengangs.
Synthesis of dynamic systems using state-space models Praktikum (SDS.P):
Lernziele Kompetenzen</td>
</tr>
</tbody>
</table>

Synthesis of dynamic systems using state-space models Vorlesung (SDS.V):
Lernziele Kompetenzen

4 Lehr und Lernformen
Adaptive and learning control (ALC.V): Vorlesung (V)
Synthesis of dynamic systems using state-space models Praktikum (SDS.P): Praktikum im Labor (P)
Synthesis of dynamic systems using state-space models Vorlesung (SDS.V): Vorlesung (V)

5 Arbeitsaufwand und Credit Points
Adaptive and learning control: 2,5 CP, Präsenzzeit 28 h, Selbststudium 47 h
Synthesis of dynamic systems using state-space models Praktikum: 1 CP, Präsenzzeit 7 h, Selbststudium 23 h
Synthesis of dynamic systems using state-space models Vorlesung: 4 CP, Präsenzzeit 42 h, Selbststudium 78 h

6 Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Modulprüfung
Die Modulprüfung erfolgt als schriftliche Klausurprüfung gemäß § 12 und umfasst die Lehrveranstaltungen
- Adaptive and learning control
- Synthesis of dynamic systems using state-space models Vorlesung

Wird die Modulprüfung als schriftliche Klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsdauer 120 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.

Prüfungsvorleistung in der Lehrveranstaltung [Regel-Prüfungsform]
- Synthesis of dynamic systems using state-space models Praktikum (unbenotet, Hausarbeit, Praxisbericht, Projektericht gemäß § 13 Absatz 3)
Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.

7 Notwendige Kenntnisse

8 Empfohlene Kenntnisse

9 Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Adaptive and learning control: 2 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat
Synthesis of dynamic systems using state-space models Praktikum: 0,5 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat
Synthesis of dynamic systems using state-space models Vorlesung: 3 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat

10 Verwendbarkeit des Moduls

11 Literatur
Adaptive and learning control:
- Die Literaturhinweise des Moduls sind im Modulhandbuch Master Electrical Engineering and Information Technology beschrieben. Die Modulbeschreibung ist im Abschnitt “Fremdmodule” diesem Modulhandbuch beigefügt. Es gilt die jeweils aktuelle Modulbeschreibung der Ursprungstudiengangs.
Synthesis of dynamic systems using state-space models Praktikum:
Die Literaturhinweise des Moduls sind im Modulhandbuch Master Electrical Engineering and Information Technology beschrieben. Die Modulbeschreibung ist im Abschnitt “Fremdmodule” diesem Modulhandbuch beigefügt. Es gilt die jeweils aktuelle Modulbeschreibung der Ursprungstudiengangs.

Synthesis of dynamic systems using state-space models Vorlesung:

- Die Literaturhinweise des Moduls sind im Modulhandbuch Master Electrical Engineering and Information Technology beschrieben. Die Modulbeschreibung ist im Abschnitt “Fremdmodule” diesem Modulhandbuch beigefügt. Es gilt die jeweils aktuelle Modulbeschreibung der Ursprungstudiengangs.
Modul 2 Brückenmodul MMT-BR

<table>
<thead>
<tr>
<th>1</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Brückenmodul MMT-BR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.1</th>
<th>Modulkurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BRM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2</th>
<th>Art</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Brückenmodul MMT-BR (BRM)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.4</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Fachsemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.5</th>
<th>Modulverantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.6</th>
<th>Weitere Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weitere Lehrende nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.7</th>
<th>Studiengangsniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.8</th>
<th>Lehrsprache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deutsch oder Englisch nach Ankündigung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Die Inhalte des Brückenmoduls sind im einzelnen in den Modulbeschreibungen der Module im Katalog Brückenmodul MMT spezifiziert.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Ziele</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lernziele Kompetenzen</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden wählen zur Ergänzung Ihrer Fähigkeiten und Kenntnisse Fächer aus den Bereichen, die nicht Inhalt des Bachelorstudiengangs waren. Die Inhalte des Brückenmoduls sind im einzelnen in den Modulbeschreibungen der Module im Katalog Brückenmodul MMT-BR spezifiziert.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung (V)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Arbeitsaufwand und Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 CP, Präsenzzeit 56 h, Selbststudium 94 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulprüfung</td>
</tr>
<tr>
<td></td>
<td>Die Modulprüfung erfolgt als und umfasst die Lehrveranstaltung Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Notwendige Kenntnisse</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Empfohlene Kenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dauer, zeitliche Gliederung und Häufigkeit des Angebots</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>4 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat</td>
</tr>
<tr>
<td>10</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>11</td>
<td>Literatur</td>
</tr>
<tr>
<td></td>
<td>– Die Literaturhinweise der einzelnen Module des Wahlpflichtkatalogs sind im Teil Wahlpflichtmodule beschrieben.</td>
</tr>
</tbody>
</table>
Modul 3 Integriertes Forschungsprojekt MT

<table>
<thead>
<tr>
<th>1</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integriertes Forschungsprojekt MT</td>
<td></td>
</tr>
</tbody>
</table>

1.1 Modulkurzbezeichnung
IFM

1.2 Art
Pflichtmodul

1.3 Lehrveranstaltungen
Forschungsprojekt (IFP-MMT)

1.4 Semester
1. Fachsemester

1.5 Modulverantwortliche Person
Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat

1.6 Weitere Lehrende
Weitere Lehrende nach aktueller Festlegung durch das Dekanat

1.7 Studiengangsniveau
Master

1.8 Lehrsprache
Deutsch oder Englisch nach Ankündigung durch das Dekanat

2 Inhalt

Abhängig von der Aufgabenstellung

3 Ziele

Lernziele Kenntnisse

Lernziele Fertigkeiten
- Die Studierenden verstehen die wissenschaftlichen und technischen Hintergründe in einem dem gewählten Gebiet des Maschinenbaus, der Elektrotechnik bzw. der Informatik. Sie sind in der Lage ihre Kompetenzen (Abstraktionsvermögen, systematisches Denken, Team und Kommunikationsfähigkeit, internationale und kulturelle Erfahrung usw.) in das Projekt einzubringen.

Lernziele Kompetenzen
- Die Studierenden sind fähig in sorgfältig definierten und abgegrenzten Themenbereichen zunehmend selbstständig zu forschen und das Projekt eigenständig zu organisieren und durchzuführen. Sie sind in der Lage die erlernten Kenntnisse in ausgewählten Gebieten so weit zu abstrahieren, dass sie im Laufe des Projekts zunehmend neue Aufgaben selbstständig lösen können.
- Die Studierenden sind in der Lage ihr ingenieurwissenschaftliches Wissen einzusetzen, um die erarbeiteten technischen oder andersartigen Lösungen für die wissenschaftliche Fragestellung gegenüber zu stellen, mittels strukturierter Methoden zu beurteilen und abschließend zu bewerten.
Die Studierenden sind befähigt eigenständig ein Entwicklungs-/Forschungsprojekt, mit allen Aspekten, die Bestandteil einer wissenschaftlichen Arbeit sind, als Vorstufe zur Masterarbeit konzeptionell zu entwickeln und durchzuführen.

4 Lehr und Lernformen

5 Arbeitsaufwand und Credit Points

7,5 CP, Präsenzzeit 2,1 h, Selbststudium 222,9 h

6 Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Modulprüfung

Die Modulprüfung erfolgt als Prüfungsstudienarbeit gemäß § 13 Absatz 2 und umfasst die Lehrveranstaltung

- Forschungsprojekt

Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.

7 Notwendige Kenntnisse

8 Empfohlene Kenntnisse

- Abhängig von der Aufgabenstellung

9 Dauer, zeitliche Gliederung und Häufigkeit des Angebots

0,15 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat

10 Verwendbarkeit des Moduls

11 Literatur

- Abhängig von der Aufgabenstellung
Modul 4 Masterarbeit

<table>
<thead>
<tr>
<th>1</th>
<th>Modulname</th>
<th>Masterarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Modulkurzbezeichnung</td>
<td>MTH</td>
</tr>
<tr>
<td>1.2</td>
<td>Art</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>1.3</td>
<td>Lehrveranstaltungen</td>
<td>Master-Thesis (MTH.P)</td>
</tr>
<tr>
<td>1.4</td>
<td>Semester</td>
<td>3. Fachsemester</td>
</tr>
<tr>
<td>1.5</td>
<td>Modulverantwortliche Person</td>
<td>Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat</td>
</tr>
<tr>
<td>1.6</td>
<td>Weitere Lehrende</td>
<td>Weitere Lehrende nach aktueller Festlegung durch das Dekanat</td>
</tr>
<tr>
<td>1.7</td>
<td>Studiengangsniveau</td>
<td>Master</td>
</tr>
<tr>
<td>1.8</td>
<td>Lehrsprache</td>
<td>Deutsch oder Englisch nach Ankündigung durch das Dekanat</td>
</tr>
</tbody>
</table>

2 Inhalt
- Je nach Aufgabenstellung

3 Ziele

Lernziele Kenntnisse
- Die Studierenden verfügen insbesondere über umfassende und tiefgreifende fachliche Fähigkeiten in dem speziellen Aufgabengebiet der Masterarbeit.
- Ferner verfügen Sie über die Kenntnis der ingenieurwissenschaftlichen Methodik für die Bearbeitung einer wissenschaftlichen Aufgabenstellung.

Lernziele Fertigkeiten
- Die Studierenden verstehen es die Möglichkeiten des Projektmanagements für die Planung der Masterarbeit zu nutzen.
- Im Rahmen der speziellen Themenstellung können die Studierenden alle erforderlichen Wissengebiete identifizieren und vergleichen.

Lernziele Kompetenzen
- Die Studierenden wenden alle Aspekte, die Bestandteil einer wissenschaftlichen Arbeit sind, (z. B. Literatur- und Patentrecherche, experimentelle Versuche oder theoretische Untersuchungen je nach Aufgabenstellung, Analyse der Ergebnisse mit statistischen Methoden, Vergleich mit anderen Untersuchungen, Interpretation,...) an.
- Die Studierenden sind in der Lage die im Rahmen der Masterarbeit anfallenden Fragestellungen und wissenschaftlichen Ergebnisse kritisch vor dem Hintergrund der bekannten ingenieurwissenschaftlichen Gesetzmäßigkeiten und Erkenntnisse zu analysieren.
- Die Studierenden stellen ihre wissenschaftlichen Ergebnisse in einen größeren Zusammenhang und vergleichen sie mit bereits bekannten bzw. veröffentlichten Ergebnissen.
- Ferner evaluieren sie den Fortschritt der Masterarbeit um Optimierungen innerhalb ihres Projektmanagements vornehmen zu können.
- Die Studierenden sind in der Lage die Masterarbeit konzeptionell und inhaltlich zu gestalten. Dabei strukturieren sie die Arbeit hinsichtlich der eigenen und externen, zeitlichen und sonstigen Ressourcen. Sie
sind fähig die Steuerung der Masterarbeit während des gesamten Verlaufs bis zum Abschluss weiterzuführen und ggf. Änderungen im Ablauf der Masterarbeit zu berücksichtigen.

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr und Lernformen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Arbeitsaufwand und Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 CP, Präsenzzeit 6,3 h, Selbststudium 743,7 h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulprüfung</td>
<td></td>
</tr>
<tr>
<td>Die Modulprüfung erfolgt als Prüfungsstudienarbeit gemäß § 13 Absatz 2 und umfasst die Lehrveranstaltung – Master-Thesis</td>
<td></td>
</tr>
<tr>
<td>Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Notwendige Kenntnisse</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Empfohlene Kenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Bachelorarbeit, Ingenieurforschungsprojekt</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Dauer, zeitliche Gliederung und Häufigkeit des Angebots</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,45 SWS, Häufigkeit des Angebots nach Festlegung durch das Dekanat</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Je nach Aufgabenstellung</td>
<td></td>
</tr>
</tbody>
</table>
Modul 5 Masterseminar

<table>
<thead>
<tr>
<th></th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Masterseminar</td>
</tr>
</tbody>
</table>

1.1 Modulkurzbezeichnung

- **MSE**

1.2 Art

- Pflichtmodul

1.3 Lehrveranstaltungen

- Masterseminar Wissenschaftl. Publizieren (MWP.S)

1.4 Semester

- 3. Fachsemester

1.5 Modulverantwortliche Person

- Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat

1.6 Weitere Lehrende

- Weitere Lehrende nach aktueller Festlegung durch das Dekanat

1.7 Studiengangsniveau

- Master

1.8 Lehrsprache

- Deutsch oder Englisch nach Ankündigung durch das Dekanat

2 Inhalt

- Abhängig von der Aufgabenstellung

3 Ziele

Lernziele Kenntnisse

Lernziele Fertigkeiten

- Die Studierenden beherrschen die ingenieurwissenschaftliche Methodik der Ergebnisaufbereitung und die Darstellung der Ergebnisse in schriftlicher Form, in Vorträgen oder in anderer Form. Sie haben die anhand von Übungen und eigenen Erfahrungen vertiefte Fähigkeit, wissenschaftliche Forschungsergebnisse in einer angemessenen Art und einem angemessenen Medium zu publizieren. Basierend auf den aufgearbeiteten Ergebnissen können sie verschiedene Präsentationsformen anwenden.

Lernziele Kompetenzen

- Die Studierenden können Arten der Ergebnisaufbereitung und der Ergebnisdarstellung diagnostizieren und hinterfragen. Sie können die Publikation von Entwicklungs- / Forschungsprojekten mit allen Aspekten, die Bestandteil einer wissenschaftlichen Arbeit sind, (z. B. Literatur- und Patentrecherche, experimentelle Versuche oder theoretische Untersuchungen je nach Aufgabenstellung, Analyse der Ergebnisse mit statistischen Methoden, Vergleich mit anderen Untersuchungen, Interpretation, ...) analysieren. Sie sind in der
Lage die Analyse sowohl in schriftlicher Form in Gutachten darzustellen als auch in Diskussionsforen zu präsentieren.

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr und Lernformen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Arbeitsaufwand und Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 CP, Präsenzzeit 70 h, Selbststudium 80 h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulprüfung</td>
<td></td>
</tr>
<tr>
<td>Die Modulprüfung erfolgt als Referat, Präsentation gemäß § 13 Absatz 5 und umfasst die Lehrveranstaltung</td>
<td></td>
</tr>
<tr>
<td>- Masterseminar Wissenschaftl. Publizieren</td>
<td></td>
</tr>
<tr>
<td>Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Notwendige Kenntnisse</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Empfohlene Kenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Abhängig von der Aufgabenstellung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Dauer, zeitliche Gliederung und Häufigkeit des Angebots</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Abhängig von der Aufgabenstellung</td>
<td></td>
</tr>
</tbody>
</table>
Modul 6 Mechatronik WP 1

<table>
<thead>
<tr>
<th>1</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Modulkurzbezeichnung</td>
</tr>
<tr>
<td>1.2</td>
<td>Art</td>
</tr>
<tr>
<td>1.3</td>
<td>Lehrveranstaltungen</td>
</tr>
<tr>
<td>1.4</td>
<td>Semester</td>
</tr>
<tr>
<td>1.5</td>
<td>Modulverantwortliche Person</td>
</tr>
<tr>
<td>1.6</td>
<td>Weitere Lehrende</td>
</tr>
<tr>
<td>1.7</td>
<td>Studiengangsniveau</td>
</tr>
<tr>
<td>1.8</td>
<td>Lehrsprache</td>
</tr>
<tr>
<td>2</td>
<td>Inhalt</td>
</tr>
<tr>
<td>3</td>
<td>Ziele</td>
</tr>
<tr>
<td>4</td>
<td>Lehr und Lernformen</td>
</tr>
<tr>
<td>5</td>
<td>Arbeitsaufwand und Credit Points</td>
</tr>
<tr>
<td>6</td>
<td>Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung</td>
</tr>
</tbody>
</table>

1 Modulname
Mechatronik WP 1

1.1 Modulkurzbezeichnung
WM1

1.2 Art
Wahlpflichtmodul

1.3 Lehrveranstaltungen
Wahlpflicht Mechatronik MMT-MTWP (WPM)

1.4 Semester
1. Fachsemester

1.5 Modulverantwortliche Person
Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat

1.6 Weitere Lehrende
Weitere Lehrende nach aktueller Festlegung durch das Dekanat

1.7 Studiengangsniveau
Master

1.8 Lehrsprache
Deutsch oder Englisch nach Ankündigung durch das Dekanat

2 Inhalt
- Die Inhalte des Wahlpflichtmoduls sind im einzelnen in den Modulbeschreibungen der Module im Wahlpflichtkatalog MMT-MTWP spezifiziert.

3 Ziele
- Lernziele Kompetenzen
 - Die Studierenden erwerben erweiterte Kompetenzen auf einzelnen Gebieten des Maschinenbaus, der Elektro- und Informationstechnik sowie der Informatik, die im einzelnen in den Modulbeschreibungen der Module im Wahlpflichtkatalog MMT-MTWP spezifiziert sind.

4 Lehr und Lernformen
- Vorlesung (V)
 - Die Dozentin oder der Dozent kann für die Lehrveranstaltungen des Moduls Anwesenheitspflicht festlegen.
 - Einsatz von wechselnden Medien nach den im Hörsaal, Seminarraum oder Laborraum gegebenen Möglichkeiten.

5 Arbeitsaufwand und Credit Points
- 5 CP, Präsenzzeit 56 h, Selbststudium 94 h

6 Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
- **Modulprüfung**
 - Die Modulprüfung erfolgt als schriftliche Klausurprüfung gemäß § 12 und umfasst die Lehrveranstaltung
 - Wahlpflicht Mechatronik MMT-MTWP
 - Wird die Modulprüfung als schriftliche Klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsdauer 90 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.
 - Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.
Notwendige Kenntnisse

Empfohlene Kenntnisse

Dauer, zeitliche Gliederung und Häufigkeit des Angebots

4 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat

Verwendbarkeit des Moduls

Literatur

- Die Literaturhinweise der einzelnen Module des Wahlpflichtkatalogs sind im Teil Wahlpflichtmodule beschrieben.
Modul 7 Mechatronik WP 2

<table>
<thead>
<tr>
<th></th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mechatronik WP 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulkurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WM2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Art</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wahlpflicht Mechatronik MMT-MTWP (WPM)</td>
</tr>
<tr>
<td></td>
<td>Wahlpflicht Mechatronik MMT-MTWP (WPM)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wahlpflicht Mechatronik MMT-MTWP (WPM): 2. Fachsemester</td>
</tr>
<tr>
<td></td>
<td>Wahlpflicht Mechatronik MMT-MTWP (WPM): 2. Fachsemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Weitere Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weitere Lehrende nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Studiengangsniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lehrsprache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deutsch oder Englisch nach Ankündigung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wahlpflicht Mechatronik MMT-MTWP (WPM):</td>
</tr>
<tr>
<td></td>
<td>– Die Inhalte des Wahlpflichtmoduls sind im einzelnen in den Modulbeschreibungen der Module im Wahlpflichtkatalog MMT-MTWP spezifiziert.</td>
</tr>
<tr>
<td></td>
<td>Wahlpflicht Mechatronik MMT-MTWP (WPM):</td>
</tr>
<tr>
<td></td>
<td>– Die Inhalte des Wahlpflichtmoduls sind im einzelnen in den Modulbeschreibungen der Module im Wahlpflichtkatalog MMT-MTWP spezifiziert.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ziele</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wahlpflicht Mechatronik MMT-MTWP (WPM):</td>
</tr>
<tr>
<td></td>
<td>– Die Studierenden erwerben erweiterte Kompetenzen auf einzelnen Gebieten des Maschinenbaus, der Elektro- und Informationstechnik sowie der Informatik die im einzelnen in den Modulbeschreibungen der Module im Wahlpflichtkatalog MMT-MTWP spezifiziert sind.</td>
</tr>
<tr>
<td></td>
<td>Wahlpflicht Mechatronik MMT-MTWP (WPM):</td>
</tr>
<tr>
<td></td>
<td>– Die Studierenden erwerben erweiterte Kompetenzen auf einzelnen Gebieten des Maschinenbaus, der Elektro- und Informationstechnik sowie der Informatik die im einzelnen in den Modulbeschreibungen der Module im Wahlpflichtkatalog MMT-MTWP spezifiziert sind.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lehr und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wahlpflicht Mechatronik MMT-MTWP (WPM): Vorlesung [V]</td>
</tr>
<tr>
<td></td>
<td>Wahlpflicht Mechatronik MMT-MTWP (WPM): Vorlesung [V]</td>
</tr>
<tr>
<td></td>
<td>Die Dozentin oder der Dozent kann für die Lehrveranstaltungen des Moduls Anwesenheitspflicht festlegen.</td>
</tr>
</tbody>
</table>
Einsatz von wechselnden Medien nach den im Hörsaal, Seminarraum oder Laborraum gegebenen Möglichkeiten.

5 Arbeitsaufwand und Credit Points

| Wahlpflicht Mechatronik MMT-MTWP | 5 CP, Präsenzzeit 56 h, Selbststudium 94 h |

| Wahlpflicht Mechatronik MMT-MTWP | 5 CP, Präsenzzeit 56 h, Selbststudium 94 h |

6 Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Modulprüfung

Die Modulprüfung erfolgt als schriftliche Klausurprüfung gemäß § 12 und umfasst die Lehrveranstaltungen:

- Wahlpflicht Mechatronik MMT-MTWP
- Wahlpflicht Mechatronik MMT-MTWP

Wird die Modulprüfung als schriftliche Klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsdauer 90 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.

Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.

7 Notwendige Kenntnisse

8 Empfohlene Kenntnisse

9 Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Wahlpflicht Mechatronik MMT-MTWP: 4 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat

Wahlpflicht Mechatronik MMT-MTWP: 4 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat

10 Verwendbarkeit des Moduls

11 Literatur

Wahlpflicht Mechatronik MMT-MTWP:

- Die Literaturhinweise der einzelnen Module des Wahlpflichtkatalogs sind im Teil Wahlpflichtmodule beschrieben.

Wahlpflicht Mechatronik MMT-MTWP:

- Die Literaturhinweise der einzelnen Module des Wahlpflichtkatalogs sind im Teil Wahlpflichtmodule beschrieben.
Modul 8 Model-based real-time simulation of mechatronic systems

<table>
<thead>
<tr>
<th></th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model-based real-time simulation of mechatronic systems</td>
</tr>
</tbody>
</table>

1. Modulkurzbezeichnung

<table>
<thead>
<tr>
<th></th>
<th>MSM</th>
</tr>
</thead>
</table>

1.2 Art

<table>
<thead>
<tr>
<th></th>
<th>Pflichtmodul</th>
</tr>
</thead>
</table>

1.3 Lehrveranstaltungen

<table>
<thead>
<tr>
<th></th>
<th>Model-based real-time simulation of mechatronic systems (MRS.V)</th>
</tr>
</thead>
</table>

1.4 Semester

<table>
<thead>
<tr>
<th></th>
<th>1. Fachsemester</th>
</tr>
</thead>
</table>

1.5 Modulverantwortliche Person

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat</th>
</tr>
</thead>
</table>

1.6 Weitere Lehrende

<table>
<thead>
<tr>
<th></th>
<th>Weitere Lehrende nach aktueller Festlegung durch das Dekanat</th>
</tr>
</thead>
</table>

1.7 Studiengangsniveau

<table>
<thead>
<tr>
<th></th>
<th>Master</th>
</tr>
</thead>
</table>

1.8 Lehrsprache

<table>
<thead>
<tr>
<th></th>
<th>Deutsch oder Englisch nach Ankündigung durch das Dekanat</th>
</tr>
</thead>
</table>

2 Inhalt

- Die Inhalte des Moduls sind im Modulhandbuch Master Electrical Engineering and Information Technology beschrieben. Die Modulbeschreibung ist im Abschnitt "Fremdmodule" diesem Modulhandbuch beigefügt. Es gilt die jeweils aktuelle Modulbeschreibung der Ursprungstudiengangs.

3 Ziele

Lernziele Kompetenzen

- Die Ziele des Moduls sind im Modulhandbuch Master Electrical Engineering and Information Technology beschrieben. Die Modulbeschreibung ist im Abschnitt "Fremdmodule" diesem Modulhandbuch beigefügt. Es gilt die jeweils aktuelle Modulbeschreibung der Ursprungstudiengangs.

4 Lehr und Lernformen

Vorlesung [V]

5 Arbeitsaufwand und Credit Points

<table>
<thead>
<tr>
<th></th>
<th>2.5 CP, Präsenzeit 28 h, Selbststudium 47 h</th>
</tr>
</thead>
</table>

6 Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Modulprüfung

Die Modulprüfung erfolgt als schriftliche Klausurprüfung gemäß § 12 und umfasst die Lehrveranstaltung

- Model-based real-time simulation of mechatronic systems

Wird die Modulprüfung als schriftliche Klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsdauer 60 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.
Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.

<table>
<thead>
<tr>
<th>7</th>
<th>Notwendige Kenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Empfohlene Kenntnisse</td>
</tr>
<tr>
<td>9</td>
<td>Dauer, zeitliche Gliederung und Häufigkeit des Angebots</td>
</tr>
<tr>
<td></td>
<td>2 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat</td>
</tr>
<tr>
<td>10</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>11</td>
<td>Literatur</td>
</tr>
<tr>
<td></td>
<td>Die Literaturhinweise des Moduls sind im Modulhandbuch Master Electrical Engineering and Information Technology beschrieben. Die Modulbeschreibung ist im Abschnitt "Fremdmodule" diesem Modulhandbuch beigefügt. Es gilt die jeweils aktuelle Modulbeschreibung der Ursprungstudiengang.</td>
</tr>
</tbody>
</table>
Modul 9 Qualitätsmanagement

<table>
<thead>
<tr>
<th>1</th>
<th>Modulname</th>
<th>Qualitätsmanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Modulkurzbezeichnung</td>
<td>QMT</td>
</tr>
<tr>
<td>1.2</td>
<td>Art</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>1.3</td>
<td>Lehrveranstaltungen</td>
<td>Qualitätsmanagement UoWp (QM.V)</td>
</tr>
<tr>
<td>1.4</td>
<td>Semester</td>
<td>2. Fachsemester</td>
</tr>
<tr>
<td>1.5</td>
<td>Modulverantwortliche Person</td>
<td>Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat</td>
</tr>
<tr>
<td>1.6</td>
<td>Weitere Lehrende</td>
<td>Weitere Lehrende nach aktueller Festlegung durch das Dekanat</td>
</tr>
<tr>
<td>1.7</td>
<td>Studiengangsniveau</td>
<td>Master</td>
</tr>
<tr>
<td>1.8</td>
<td>Lehrsprache</td>
<td>Deutsch oder Englisch nach Ankündigung durch das Dekanat</td>
</tr>
</tbody>
</table>

2 Inhalt

- Einführung in das Qualitätsmanagement
- Prozessmanagement
- Vorstellung der ISO 9000-Familie
- Motivation und Umgang mit Veränderungen
- Dokumentation im Qualitätsmanagement
- Ablauf und Nutzen interner Audits
- Kundenanforderungen erkennen und bewerten
- Kommunikation mit internen und externen Parteien
- Rechtliche Aspekte des Qualitätsmanagements
- Berichtswesen und Kennzahlen
- Kontinuierlicher Verbesserungsprozess
- 7 Grundwerkzeuge des Qualitätsmanagements
- QM-Methoden für besondere Aufgabenstellungen

3 Ziele

Lernziele Kenntnisse

- Die Studierenden haben theoretische Kenntnisse zum Qualitätsmanagement, Prozessmanagement und den einschlägigen Normen erlangt. Sie kennen die Grundzüge der QM-Dokumentation und Durchführung von Audits und haben die rechtliche Aspekte des Qualitätsmanagements kennengelernt.

Lernziele Fertigkeiten

- Die Studierenden verstehen die Grundzüge des Qualitätsmanagements, die verschiedenen Rollen in Unternehmen und die Bedeutung und Gestaltung von Prozessen für das Qualitätsmanagement.

Lernziele Kompetenzen

- Die Studierenden besitzen praktische Fertigkeiten im Umgang mit Qualitätsmanagementmethoden sowie bei der Anwendung von Qualitätswerkzeugen auch mit Blick auf betriebliche Kennzahlen. Sie können gezielt Qualitätsverbesserungsprozesse anstoßen und sich hierin einbringen.

- Die Studierenden können Prozesse analysieren und in geringem Umfang weiterentwickeln.
4 Lehr und Lernformen

Vorlesung (V)

5 Arbeitsaufwand und Credit Points

5 CP, Präsenzzeit 56 h, Selbststudium 94 h

6 Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Modulprüfung

Die Modulprüfung erfolgt als schriftliche Klausurprüfung gemäß § 12 und umfasst die Lehrveranstaltung

- Qualitätsmanagement UoWp

Wird die Modulprüfung als schriftliche Klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsdauer 90 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.

Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.

7 Notwendige Kenntnisse

8 Empfohlene Kenntnisse

- Prozess- und Projektmanagement.

9 Dauer, zeitliche Gliederung und Häufigkeit des Angebotes

4 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat

10 Verwendbarkeit des Moduls

11 Literatur

− Sie beherrschen die Grundzüge des Qualitätsmanagements. Sie können diesbezügliche Kundenanforderungen erkennen, bewerten und mit in- und externen Parteien hierzu kommunizieren.

− Die Studierenden sind in der Lage, einfache Prozesse und Kennzahlen zu beschreiben.
Modul 10 Requirements Engineering and Management

<table>
<thead>
<tr>
<th></th>
<th>Modulname</th>
<th>Requirements Engineering and Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Modulkurzbezeichnung</td>
<td>REM</td>
</tr>
<tr>
<td>1.2</td>
<td>Art</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>1.3</td>
<td>Lehrveranstaltungen</td>
<td>Requirements Engineering and Management Praktikum (REM.P)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Requirements Engineering and Management Seminar (REM.S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Requirements Engineering and Management Vorlesung (REM.V)</td>
</tr>
<tr>
<td>1.4</td>
<td>Semester</td>
<td>Requirements Engineering and Management Praktikum (REM.P): 1. Fachsemester</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Requirements Engineering and Management Seminar (REM.S): 1. Fachsemester</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Requirements Engineering and Management Vorlesung (REM.V): 1. Fachsemester</td>
</tr>
<tr>
<td>1.5</td>
<td>Modulverantwortliche Person</td>
<td>Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat</td>
</tr>
<tr>
<td>1.6</td>
<td>Weitere Lehrende</td>
<td>Weitere Lehrende nach aktueller Festlegung durch das Dekanat</td>
</tr>
<tr>
<td>1.7</td>
<td>Studiengangsniveau</td>
<td>Master</td>
</tr>
<tr>
<td>1.8</td>
<td>Lehrsprache</td>
<td>Deutsch oder Englisch nach Ankündigung durch das Dekanat</td>
</tr>
</tbody>
</table>

2 Inhalt

Requirements Engineering and Management Praktikum (REM.P):

Requirements Engineering and Management Seminar (REM.S):

Requirements Engineering and Management Vorlesung (REM.V):

3 Ziele

Requirements Engineering and Management Praktikum (REM.P):
Lernziele Kompetenzen

Requirements Engineering and Management Seminar (REM.S):
Lernziele Kompetenzen

Requirements Engineering and Management Vorlesung (REM.V):
Lernziele Kompetenzen

4 Lehr und Lernformen
Requirements Engineering and Management Praktikum (REM.P): Praktikum im Labor (P)
Requirements Engineering and Management Seminar (REM.S):
Requirements Engineering and Management Vorlesung (REM.V): Vorlesung (V)

5 Arbeitsaufwand und Credit Points
Requirements Engineering and Management Praktikum: 1 CP, Präsenzzeit 14 h, Selbststudium 16 h
Requirements Engineering and Management Seminar: 1 CP, Präsenzzeit 14 h, Selbststudium 16 h
Requirements Engineering and Management Vorlesung: 3 CP, Präsenzzeit 28 h, Selbststudium 62 h

6 Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Modulprüfung
Die Modulprüfung erfolgt als schriftliche Klausurprüfung gemäß § 12 und umfasst die Lehrveranstaltungen
– Requirements Engineering and Management Seminar
– Requirements Engineering and Management Vorlesung
Wird die Modulprüfung als schriftliche Klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsdauer 90 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.

Prüfungsvorleistung in der Lehrveranstaltung (Regel-Prüfungsform)
– Requirements Engineering and Management Praktikum (unbenotet, Hausarbeit, Praxisbericht, Projektbericht gemäß § 13 Absatz 3)
Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.

7 Notwendige Kenntnisse

8 Empfohlene Kenntnisse

9 Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Requirements Engineering and Management Praktikum: 1 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat
Requirements Engineering and Management Seminar: 1 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat
Requirements Engineering and Management Vorlesung: 2 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat

10 Verwendbarkeit des Moduls

11 Literatur
Requirements Engineering and Management Praktikum:
Requirements Engineering and Management Seminar:

Requirements Engineering and Management Vorlesung:

Modul 11 Strukturdynamik, Simulation und Validierung

<table>
<thead>
<tr>
<th>1</th>
<th>Modulname</th>
<th>Strukturdynamik, Simulation und Validierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Modulkurzbezeichnung</td>
<td>SSV</td>
</tr>
<tr>
<td>1.2</td>
<td>Art</td>
<td>Pflichtmodul</td>
</tr>
</tbody>
</table>
| 1.3 | Lehrveranstaltungen | Strukturdynamik, Simulation und Validierung Praktikum [SSV.P]
| | | Strukturdynamik, Simulation und Validierung Seminar [SSV.S]
| | | Strukturdynamik, Simulation und Validierung Vorlesung [SSV.V] |
| 1.4 | Semester | Strukturdynamik, Simulation und Validierung Praktikum [SSV.P]: 2. Fachsemester
| | | Strukturdynamik, Simulation und Validierung Seminar [SSV.S]: 2. Fachsemester
| | | Strukturdynamik, Simulation und Validierung Vorlesung [SSV.V]: 2. Fachsemester |
| 1.5 | Modulverantwortliche Person | Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat |
| 1.6 | Weitere Lehrende | Weitere Lehrende nach aktueller Festlegung durch das Dekanat |
| 1.7 | Studiengangsniveau | Master |
| 1.8 | Lehrsprache | Deutsch oder Englisch nach Ankündigung durch das Dekanat |

2 Inhalt
Strukturdynamik, Simulation und Validierung Praktikum [SSV.P]:
Strukturdynamik, Simulation und Validierung Seminar [SSV.S]:
Strukturdynamik, Simulation und Validierung Vorlesung [SSV.V]:
- Strukturdynamik und Simulation: Strukturmechanische und –dynamische Modellierungsansätze (Analytische Näherungen, FE-Modellierung); Physikalisch sinnvolle Reduktion von Modellen; Aufbau und Ergebnisse von Multiphysics-Simulationen; Effekte von Fertigungstoleranzen
- Validierung: Validierungsstrategien; Definition von Validierungsgrenzen

3 Ziele
Strukturdynamik, Simulation und Validierung Vorlesung [SSV.V]:
Lernziele Kenntnisse
- Die Studierenden kennen verschiedene Methoden zu Modellbildung und Simulation von interdisziplinären Systemen.
- Sie erhalten tieferen Einblick Möglichkeiten und Grenzen von strukturmechanischen Simulationen.
- Sie können Validierungsstrategien und Methoden zur Verringerung von Risiken darstellen.
Lernziele Fertigkeiten
- Die Studierenden verstehen die Zusammenhänge in den technischen Systemen und können Verhalten auf äußere Anregungen vorhersagen.
Lernziele Kompetenzen
- Die Studierenden können die vermittelten Modelle und aufgezeigten Strategien zur Validierung auf Systeme anwenden.
- Die Studierenden sind in der Lage auf Basis der erlangten Ergebnisse Systemeigenschaften herauszuarbeiten und tiefergehend zu analysieren.
- Die Studierenden sind in der Lage Systemeigenschaften hinsichtlich Validierungspotential zu bewerten.
- Die Studierenden können Gesamtsysteme aus einzelnen Komponenten zusammensetzen und Validierungsstrategien für diese komplexen Systeme generieren.

4 Lehr und Lernformen

| Strukturdynamik, Simulation und Validierung Praktikum [SSV.P]: Praktikum im Labor [P] |
| Strukturdynamik, Simulation und Validierung Seminar [SSV.S]: |
| Strukturdynamik, Simulation und Validierung Vorlesung [SSV.V]: Vorlesung [V] |

Die Dozentin oder der Dozent kann für die Lehrveranstaltungen des Moduls Anwesenheitspflicht festlegen.

Einsatz von wechselnden Medien nach den im Hörsaal, Seminarraum oder Laborraum gegebenen Möglichkeiten.

5 Arbeitsaufwand und Credit Points

| Strukturdynamik, Simulation und Validierung Praktikum: 1 CP, Präsenzzeit 14 h, Selbststudium 16 h |
| Strukturdynamik, Simulation und Validierung Seminar: 1,5 CP, Präsenzzeit 14 h, Selbststudium 31 h |
| Strukturdynamik, Simulation und Validierung Vorlesung: 5 CP, Präsenzzeit 56 h, Selbststudium 94 h |

6 Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Modulprüfung

Die Modulprüfung erfolgt als schriftliche Klausurprüfung gemäß § 12 und umfasst die Lehrveranstaltung

- Strukturdynamik, Simulation und Validierung Vorlesung

Wird die Modulprüfung als schriftliche Klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsdauer 90 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.

Prüfungsvorleistung in der Lehrveranstaltung (Regel-Prüfungsform)

- Strukturdynamik, Simulation und Validierung Praktikum [unbenotet, Hausarbeit, Praxisbericht, Projektbericht gemäß § 13 Absatz 3]

Ausnahmen in der Prüfungsvormäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.

7 Notwendige Kenntnisse

8 Empfohlene Kenntnisse

| Strukturdynamik, Simulation und Validierung Vorlesung [SSV.V]: |
| Erfolgreiche Teilnahme an den Lehrveranstaltungen TM3, Starrkörperdynamik |

9 Dauer, zeitliche Gliederung und Häufigkeit des Angebots

| Strukturdynamik, Simulation und Validierung Praktikum: 1 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat |
| Strukturdynamik, Simulation und Validierung Seminar: 1 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat |
| Strukturdynamik, Simulation und Validierung Vorlesung: 4 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat |

10 Verwendbarkeit des Moduls

11 Literatur

| Strukturdynamik, Simulation und Validierung Vorlesung: |
| Vorlesungsumdruck |
| System-Level Validation, Chen et. al. Springer 2013 978-1-4414-1359-2 |
| Verification and Validation in Systems Engineering, Debabbi, 2010, Springer 978-3-642-15228-3 |
| Model Validation and Uncertainty Quantification Volume 3, Proceedings IMAC Conference, Springer 978-3-319-04552-8 |
Modul 12 SuK Begleitstudium

<table>
<thead>
<tr>
<th>1</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuK Begleitstudium</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.1</th>
<th>Modulkurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUK</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2</th>
<th>Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlpflichtmodul</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuK Begleitstudium (SB.V)</td>
<td></td>
</tr>
<tr>
<td>SuK Begleitstudium (SB.V)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.4</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuK Begleitstudium (SB.V): 2. Fachsemester</td>
<td></td>
</tr>
<tr>
<td>SuK Begleitstudium (SB.V): 1. Fachsemester</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.5</th>
<th>Modulverantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.6</th>
<th>Weitere Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weitere Lehrende nach aktueller Festlegung durch das Dekanat</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.7</th>
<th>Studiengangsniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.8</th>
<th>Lehrsprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch oder Englisch nach Ankündigung durch das Dekanat</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt

SuK Begleitstudium (SB.V):

SuK Begleitstudium (SB.V):

Ziele

SuK Begleitstudium (SB.V):
- Lernziele Kenntnisse
 - Die vermittelten Kenntnisse sind abhängig von der gewählten Veranstaltung.

SuK Begleitstudium (SB.V):
- Lernziele Kompetenzen
 - Sie sind in der Lage, je nach gewählter Veranstaltung, technische, politische oder gesellschaftliche Entwicklungen vergleichend gegenüberzustellen, zu hinterfragen und zu bewerten.
SuK Begleitstudium (SB.V):

Lernziele Kenntnisse
- Die vermittelten Kenntnisse sind abhängig von der gewählten Veranstaltung.

Lernziele Kompetenzen
- Sie sind in der Lage, je nach gewählter Veranstaltung, technische, politische oder gesellschaftliche Entwicklungen vergleichend gegenüberzustellen, zu hinterfragen und zu bewerten.

4 Lehr und Lernformen

SuK Begleitstudium (SB.V): Vorlesung (V)

5 Arbeitsaufwand und Credit Points

SuK Begleitstudium: 2,5 CP, Präsenzzeit 28 h, Selbststudium 47 h

6 Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Modulprüfung

Die Modulprüfung erfolgt als schriftliche Klausurprüfung gemäß § 12 und umfasst die Lehrveranstaltungen
- SuK Begleitstudium
- SuK Begleitstudium

Wird die Modulprüfung als schriftliche Klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsdauer 90 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.

Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.

7 Notwendige Kenntnisse

8 Empfohlene Kenntnisse

9 Dauer, zeitliche Gliederung und Häufigkeit des Angebots

SuK Begleitstudium: 2 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat

10 Verwendbarkeit des Moduls

11 Literatur

SuK Begleitstudium:
- Abhängig von belegter Veranstaltung.

SuK Begleitstudium:
- Abhängig von belegter Veranstaltung.
Wahlpflichtmodule Katalog MMT-MTWP
Modul 1 Integriertes Forschungsprojekt MT

<table>
<thead>
<tr>
<th>1</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname</td>
<td>Integriertes Forschungsprojekt MT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.1</th>
<th>Modulkurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkurzbezeichnung</td>
<td>IFM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2</th>
<th>Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltungen</td>
<td>Forschungsprojekt (IFP-FP)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.4</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester</td>
<td>Keine Fachsemesterbindung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.5</th>
<th>Modulverantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche Person</td>
<td>nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.6</th>
<th>Weitere Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weitere Lehrende</td>
<td>nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.7</th>
<th>Studiengangsniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiengangsniveau</td>
<td>Master</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.8</th>
<th>Lehrsprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrsprache</td>
<td>Deutsch oder Englisch nach Ankündigung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhalt</td>
<td>Das Ingenieur-Forschungsprojekt stellt einen Praxisblock im Masterstudium dar. Die inhaltliche Ausgestaltung dieses Praxisblocks soll den berufsfeldbezogenen Aufgabenstellungen entsprechen und erfolgt daher je nach Aufgabenstellung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Ziele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziele</td>
<td>Lernziele Kenntnisse</td>
</tr>
<tr>
<td>Ziele</td>
<td>Die Studierenden kennen die ingenieurwissenschaftlichen Prinzipien in ausgewählten Gebieten des Maschinenbaus und der Kunststofftechnik sowie anwendungsorientierte Verfahren und Vorgehensweisen auf diesen Gebieten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Ziele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziele</td>
<td>Lernziele Fertigkeiten</td>
</tr>
<tr>
<td>Ziele</td>
<td>Die Studierenden verstehen die wissenschaftlichen und technischen Hintergründe in demm gewählten Gebiet des Maschinenbaus und der Kunststofftechnik. Sie sind in der Lage Ihre Kompetenzen (Abstraktionsvermögen, systematisches Denken, Team und Kommunikationsfähigkeit, internationale und kulturelle Erfahrung usw.) in das Projekt einbringen zu können.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Ziele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziele</td>
<td>Lernziele Kompetenzen</td>
</tr>
<tr>
<td>Ziele</td>
<td>Die Studierenden sind fähig selbstständig wissenschaftlich zu arbeiten und komplexere Projekte zu organisieren, durchzuführen und zu leiten. Sie können die erlernten Kenntnisse in ausgewählten Gebieten so weit zu abstrahieren, dass sie auch neue Aufgaben selbstständig lösen können.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Ziele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziele</td>
<td>Studierende sind befähigt für ausgewählte Gebiete des Maschinenbaus und der Kunststofftechnik Probleme systematisch zu analysieren und zu lösen, die bei der Entwicklung von Prozessen und Maschinen auftreten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Ziele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziele</td>
<td>Studierende sind in der Lage ihr ingenieurwissenschaftliches Wissen einzusetzen um eigenständig komplexe Lösungen für neue Verfahren und Maschinen zu erarbeiten, zu beurteilen und zu bewerten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Ziele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziele</td>
<td>Studierende sind befähigt eigenständig ein Entwicklungs-/ Forschungsprojekt mit allen Aspekten, die Bestandteil einer wissenschaftlichen Arbeit sind, als Vorstufe zur Masterarbeit konzeptionell zu entwickeln und durchzuführen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr und Lernformen</th>
</tr>
</thead>
</table>
Praktikum im Labor [P]

<table>
<thead>
<tr>
<th>Arbeitsaufwand und Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 CP, Präsenzzeit 1,4 h, Selbststudium 148,6 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulprüfung</td>
</tr>
<tr>
<td>Die Modulprüfung erfolgt als Prüfungsstudienarbeit gemäß § 13 Absatz 2 und umfasst die Lehrveranstaltung</td>
</tr>
<tr>
<td>– Forschungsprojekt</td>
</tr>
<tr>
<td>Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notwendige Kenntnisse</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Kenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Bachelorarbeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dauer, zeitliche Gliederung und Häufigkeit des Angebots</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,1 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Je nach Aufgabenstellung</td>
</tr>
</tbody>
</table>
Modul 2 Maschinenakustik

<table>
<thead>
<tr>
<th></th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maschinenakustik</td>
</tr>
</tbody>
</table>

1.1 Modulkurzbezeichnung
- MAK

1.2 Art
- Wahlpflichtmodul

1.3 Lehrveranstaltungen
- Maschinenakustik (MAA.V)
- Maschinenakustik Praktikum (MA.P)

1.4 Semester
- Maschinenakustik (MAA.V): Keine Fachsemesterbindung
- Maschinenakustik Praktikum (MA.P): Keine Fachsemesterbindung

1.5 Modulverantwortliche Person
- Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat

1.6 Weitere Lehrende
- Weitere Lehrende nach aktueller Festlegung durch das Dekanat

1.7 Studiengangsniveau
- Master

1.8 Lehrsprache
- Deutsch oder Englisch nach Ankündigung durch das Dekanat

2 Inhalt

Maschinenakustik (MAA.V):
- Grundlagen der physikalischen Zusammenhänge bei der Geräuschentwicklung von Anlagen, Maschinen und Fahrzeugen.
- Schallentstehung, Schalleitung, Schallabstrahlung.
- Luftschall, Körperschall und Flüssigkeitsschall.
- Schalldämmung und Schalldämpfung.
- Grundlagen bewährter Geräuschminderungsmaßnahmen.

Maschinenakustik Praktikum (MA.P):
- Grundlagen der akustischen Messtechnik und deren Anwendungsgrenzen.
- Schalldruckpegel, Beschleunigungspegel, Kraftpegel.
- Frequenzanalyse, Schmalband-, Terzanalyse.
- Übertragungsfunktion; Eigenschwingungsverhalten.
- Schallentstehung, Schallleitung, Schallabstrahlung.
- Schallleistung, Schallintensität, Anregungskräfte und -momente, Schalldämmung und Schalldämpfung.
- Grundlagen bewährter Geräuschminderungsmaßnahmen.

3 Ziele

Maschinenakustik (MAA.V):
- Lernziele Kenntnisse
 - Die Studierenden können grundlegende physikalische Kenntnisse der Schallentstehung bei Anlagen, Maschinen und Fahrzeugen benennen und umreißen.
 - Sie haben grundlegende Kenntnisse der akustischen Messtechnik.
Die Studierenden entwickeln Verständnis für den multidisziplinären Zusammenhang der beteiligten Ingenieurwissenschaften.

Lernziele Fertigkeiten
- Die Studierenden sind in der Lage, systematische Geräuschuntersuchungen anwendungsorientiert zu planen, zu analysieren und zu beurteilen.

Lernziele Kompetenzen
- Die Studierenden sind in der Lage, Ergebnisse von Geräuschuntersuchungen konstruktiv in verbesserte Produkte umzusetzen.
- Sie können über Inhalte und Probleme bei maschinenakustischen Fragestellungen sowohl mit Fachkollegen als auch firmenübergreifend kommunizieren.
- Die Studierenden sind in der Lage, Literaturrecherchen zum aktuellen Stand der relevanten Geräuschgesetzgebung durchzuführen.
- Sie können maschinenakustisch relevante Informationen und Daten beschaffen, kritisch bewerten und zielgerichtet verwenden.
- Die Studierenden sind in der Lage, Wissen aus den beteiligten Fachgebieten zu kombinieren und zu bewerten.
- Sie können Untersuchungsmethoden und Abhilfemaßnahmen unter betriebswirtschaftlichen Gesichtspunkten entwickeln und verifizieren.
- Die Studierenden sind in der Lage, Kenntnisse auf einem zunehmend nachgefragten speziellen Teilgebiet der Technik bei der Entwicklung von Anlagen, Maschinen und Fahrzeugen anzuwenden.
- Sie können die erworbenen Kenntnisse eigenverantwortlich weiterentwickeln und selbstständig vertiefen.

Maschinenakustik Praktikum (MA.P):
Lernziele Kenntnisse
- Die Studierenden können grundlegende physikalische Kenntnisse der Schallentstehung bei Anlagen, Maschinen und Fahrzeugen und grundlegende Kenntnisse der akustischen Messtechnik anwenden, benennen und umreißen.

Lernziele Fertigkeiten
- Die Studierenden sind in der Lage, systematische Geräuschuntersuchungen anwendungsorientiert zu planen, zu analysieren und zu beurteilen.

Lernziele Kompetenzen
- Die Studierenden sind in der Lage, Ergebnisse von Geräuschuntersuchungen konstruktiv in verbesserte Produkte umzusetzen.
- Die Studierenden sind in der Lage, maschinenakustische Messergebnisse kritisch zu analysieren und zielgerichtet darzustellen.
- Die Studierenden sind in der Lage, geeignete Untersuchungsmethoden und Abhilfemaßnahmen zu entwickeln, gegenüberzustellen und zu vertiefen.
- Die Studierenden sind in der Lage, Kenntnisse auf einem zunehmend nachgefragten speziellen Teilgebiet der Technik bei der Entwicklung von Anlagen, Maschinen und Fahrzeugen anzuwenden.
- Sie können die erworbenen Kenntnisse eigenverantwortlich weiterentwickeln und vertiefen.

4 Lehr und Lernformen
Maschinenakustik (MAA.V): Vorlesung (V)
Maschinenakustik Praktikum (MA.P): Praktikum im Labor (P)

Die Dozentin oder der Dozent kann für die Lehrveranstaltungen des Moduls Anwesenheitspflicht festlegen.

Einsatz von wechselnden Medien nach den im Hörsaal, Seminarraum oder Laborraum gegebenen Möglichkeiten.

5 Arbeitsaufwand und Credit Points
Maschinenakustik: 4 CP, Präsenzzeit 42 h, Selbststudium 78 h
Maschinenakustik Praktikum: 1 CP, Präsenzzeit 14 h, Selbststudium 16 h

6 Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Modulprüfung
Die Modulprüfung erfolgt als schriftliche Klausurprüfung gemäß § 12 und umfasst die Lehrveranstaltung – Maschinenakustik

Wird die Modulprüfung als schriftliche Klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsdauer 0 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.
<table>
<thead>
<tr>
<th>Prüfungsvorleistung in der Lehrveranstaltung (Regel-Prüfungsform)</th>
</tr>
</thead>
<tbody>
<tr>
<td>− Maschinenakustik Praktikum [unbenotet, Hausarbeit, Praxisbericht, Projektbericht gemäß § 13 Absatz 3]</td>
</tr>
<tr>
<td>Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7 Notwendige Kenntnisse</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8 Empfohlene Kenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maschinenakustik (MAA.V):</td>
</tr>
<tr>
<td>− Maschinendynamik, Regelungstechnik</td>
</tr>
<tr>
<td>Maschinenakustik Praktikum (MA.P):</td>
</tr>
<tr>
<td>− Maschinendynamik, Regelungstechnik, Messtechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9 Dauer, zeitliche Gliederung und Häufigkeit des Angebots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maschinenakustik: 3 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat</td>
</tr>
<tr>
<td>Maschinenakustik Praktikum: 1 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10 Verwendbarkeit des Moduls</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>11 Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maschinenakustik:</td>
</tr>
<tr>
<td>− Angert, Roland: Maschinenakustik, Vorlesungsskript, Hochschule Darmstadt,</td>
</tr>
<tr>
<td>Maschinenakustik Praktikum:</td>
</tr>
<tr>
<td>− Angert, Roland: Maschinenakustik, Vorlesungsskript, Hochschule Darmstadt,</td>
</tr>
</tbody>
</table>
Modul 3 Mechatronische Fahrzeugsysteme

<table>
<thead>
<tr>
<th></th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mechatronische Fahrzeugsysteme</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.1</th>
<th>Modulkurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MFS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2</th>
<th>Art</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mechatronische Fahrzeugsysteme (MFS.V)</td>
</tr>
<tr>
<td></td>
<td>Mechatronische Fahrzeugsysteme Praktikum (MFS.P)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.4</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mechatronische Fahrzeugsysteme (MFS.V): Keine Fachsemesterbindung</td>
</tr>
<tr>
<td></td>
<td>Mechatronische Fahrzeugsysteme Praktikum (MFS.P): Keine Fachsemesterbindung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.5</th>
<th>Modulverantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.6</th>
<th>Weitere Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weitere Lehrende nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.7</th>
<th>Studiengangsniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.8</th>
<th>Lehrsprache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deutsch oder Englisch nach Ankündigung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mechatronische Fahrzeugsysteme (MFS.V):</td>
</tr>
<tr>
<td></td>
<td>Einführung / Überblick über mechatronische Fahrzeugsysteme;</td>
</tr>
<tr>
<td></td>
<td>Systemtheorie, Systemanalyse im Zustandsraum;</td>
</tr>
<tr>
<td></td>
<td>Sensoren im Kraftfahrzeug: Anforderungen, Herstellungsverfahren, Sensoren zur Messung von Position, Raddrehzahl, Drehrate, Beschleunigung, Druck;</td>
</tr>
<tr>
<td></td>
<td>Funktionsweise, Komponenten und mathematische Modellbildung von Assistenz-Systemen, wie z.B.: ABS, ASR, ESP, ACC, AFS</td>
</tr>
<tr>
<td></td>
<td>Mechatronische Fahrzeugsysteme Praktikum (MFS.P):</td>
</tr>
<tr>
<td></td>
<td>Aufbau von Systemmodellen im Zustandsraum;</td>
</tr>
<tr>
<td></td>
<td>Aufbau von interdisziplinären Systemen in einem Modellierungstool auf Modelica-Basis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Ziele</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mechatronische Fahrzeugsysteme (MFS.V):</td>
</tr>
<tr>
<td></td>
<td>Lernziele Kenntnisse</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden können die Grundlagen von Systemtheorie und Signaltheorie darstellen.</td>
</tr>
<tr>
<td></td>
<td>Sie können die Funktionsweise, Aufbau und mathematische Modellierung von Fahrerassistenzsystemen in modernen PKW beschreiben und wiedergeben.</td>
</tr>
<tr>
<td></td>
<td>Lernziele Fertigkeiten</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden sind in der Lage, geeignete mathematische Modellierungen und Simulationen fahrdynamischer Vorgänge zur Nutzung in Fahrerassistenzsystemen an einem Beispiel zu erläutern und die Funktionsabläufe zu verstehen.</td>
</tr>
<tr>
<td></td>
<td>Lernziele Kompetenzen</td>
</tr>
</tbody>
</table>
Die Studierenden sind in der Lage, Zustandsraummodelle zu entwerfen und interdisziplinäre Modelle anwenden.

Die Studierenden können anhand von Simulationen die Funktionsweise von Assistenzsystemen analysieren und daraus auf Modellierungsprobleme schließen.

Die Studierenden sind in der Lage, eigenständige Modellvariationen auszuwählen und zu überprüfen.

Die Studierenden können Modelle so umbauen, dass sie eigene Funktionalitäten vorschlagen und per Simulationsrechnungen entwickeln können.

Mechatronische Fahrzeugsysteme Praktikum (MFS.P):

Lernziele Kenntnisse

- Die Studierenden können Simulationswerkzeuge für die Modellierung von Fahrerassistenzsystemen benennen und deren Funktionsweise umreißen.

Lernziele Fertigkeiten

- Die Studierenden sind in der Lage, den Aufbau eines Simulationsmodells an einem Beispiel zu erläutern.

Lernziele Kompetenzen

- Die Studierenden sind in der Lage, den Aufbau eines Modells durchzuführen.

- Die Studierenden können die erzeugten Modelldaten analysieren und daraus auf eine korrekte Funktion des Assistenzsystems schließen.

- Die Studierenden sind in der Lage, eigenständige Modellvarianten auszuwählen und zu überprüfen.

- Die Studierenden können Modelle so umbauen, dass sie eigene Funktionalitäten vorschlagen und per Simulationsrechnungen entwickeln können.

4 Lehr und Lernformen

Mechatronische Fahrzeugsysteme (MFS.V): Vorlesung (V)

Mechatronische Fahrzeugsysteme Praktikum (MFS.P): Praktikum im Labor (P)

Die Dozentin oder der Dozent kann für die Lehrveranstaltungen des Moduls Anwesenheitspflicht festlegen.

Einsatz von wechselnden Medien nach den im Hörsaal, Seminarraum oder Laborraum gegebenen Möglichkeiten.

5 Arbeitsaufwand und Credit Points

Mechatronische Fahrzeugsysteme: 3 CP, Präsenzzeit 42 h, Selbststudium 48 h

Mechatronische Fahrzeugsysteme Praktikum: 2 CP, Präsenzzeit 28 h, Selbststudium 32 h

6 Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Modulprüfung

Die Modulprüfung erfolgt als schriftliche Klausurprüfung gemäß § 12 und umfasst die Lehrveranstaltung

- Mechatronische Fahrzeugsysteme

Wird die Modulprüfung als schriftliche Klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsdauer 0 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.

Prüfungsvoraussetzung in der Lehrveranstaltung (Regel-Prüfungsform)

- Mechatronische Fahrzeugsysteme Praktikum (unbenotet, Hausarbeit, Praxisbericht, Projektbericht gemäß § 13 Absatz 3)

Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.

7 Notwendige Kenntnisse

8 Empfohlene Kenntnisse

9 Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Mechatronische Fahrzeugsysteme: 3 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat

Mechatronische Fahrzeugsysteme Praktikum: 2 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat

10 Verwendbarkeit des Moduls

11 Literatur
Mechatronische Fahrzeugsysteme:

Mechatronische Fahrzeugsysteme Praktikum:
- Christoph Überhuber ; Stefan Katzenbeisser: MATLAB 6.5 : eine Einführung; Wien [u.a.] : Springer, 2002; ISBN: 3-211-83826-0
Modul 4 Numerische Modalanalyse

<table>
<thead>
<tr>
<th>1</th>
<th>Modulname</th>
<th>Numerische Modalanalyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Modulkurzbezeichnung</td>
<td>NMO</td>
</tr>
<tr>
<td>1.2</td>
<td>Art</td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>
| 1.3 | Lehrveranstaltungen | Numerische Modalanalyse (NMA.V)
| | | Numerische Modalanalyse Praktikum (NMA.P) |
| 1.4 | Semester | Numerische Modalanalyse (NMA.V): Keine Fachsemesterbindung
| | | Numerische Modalanalyse Praktikum (NMA.P): Keine Fachsemesterbindung |
| 1.5 | Modulverantwortliche Person | Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat |
| 1.6 | Weitere Lehrende | Weitere Lehrende nach aktueller Festlegung durch das Dekanat |
| 1.7 | Studiengangsniveau | Master |
| 1.8 | Lehrsprache | Deutsch oder Englisch nach Ankündigung durch das Dekanat |

2 Inhalt
Numerische Modalanalyse (NMA.V):
- Systeme mit einem Freiheitsgrad: freie und erzwungene Schwingung; Gesamtschwingung
- Systeme mit 2 und mehr Freiheitsgraden: freie und erzwungene Schwingung; Gesamtschwingung
- Modale Analyse bei ungedämpften Systemen und Systemen mit Proportionaldämpfung: Modale Entkopplung und modale Reduktion mit Eigenvektoren des konservativen Systems
- Modale Analyse bei Systemen mit nicht proportionaler Dämpfung: Modale Entkopplung und modale Reduktion mit Rechts-Links Eigenvektoren
Numerische Modalanalyse Praktikum (NMA.P):
- Entkopplung und Reduktion am Beispiel eines Biegeschwingers ohne Dämpfung (z.B. Lavalrotor)
- Entkopplung und Reduktion am Beispiel eines Biegeschwingers mit nichtproportionaler Dämpfung (z.B. Lavalrotor mit Dichtspalt in Gleitlagerung)

3 Ziele
Numerische Modalanalyse (NMA.V):
Lernziele Kenntnisse
- Die Studierenden erkennen die Bedeutung des Einfreiheitsgrad-Schwingers in der numerischen Modalanalyse.
- Die Studierenden kennen beim Mehrfreiheitsgradschwinger die Begriffe Eigenwerte und Eigenvektoren und sie wissen, wie man vom Eigenvektor zur Eigenform kommt - auch bei gedämmten Systemen.
Lernziele Fertigkeiten
- Die Studierenden verstehen die modale Transformation von physikalischen Freiheitsgraden auf generalisierte Freiheitsgrade mit Hilfe der Eigenvektoren sowohl bei ungedämpften als auch gedämmten Systemen.
- Die Studierenden können die Orthogonalitätsbeziehungen der Eigenvektoren bei ungedämpften und gedämmten Systemen erklären.
<table>
<thead>
<tr>
<th>Lernziele Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden können die Modale Transformation/Reduktion auf Schwingungssysteme mit vielen Freiheitsgraden anwenden.</td>
</tr>
<tr>
<td>Die Studierende können auf diesem Weg freie Schwingungen, erzwungene Schwingungen und die Gesamtschwingung berechnen.</td>
</tr>
<tr>
<td>Die Studierenden sind in der Lage, das dynamische Verhalten von schwingungsfähigen Systemen mit Hilfe der modalen Transformation/Reduktion zu analysieren.</td>
</tr>
<tr>
<td>Die Studierenden sind in der Lage, eigenständig verschiedene Grade der modalen Reduktion miteinander zu vergleichen und hinsichtlich der Eignung für die vorliegende Problemstellung zu bewerten.</td>
</tr>
<tr>
<td>Sie sind in der Lage, wissenschaftliche Informationen zur numerischen Modalanalyse zu beschaffen, zu verstehen und weiterführende Schlüsse daraus zu ziehen.</td>
</tr>
<tr>
<td>Die Studierenden sind in der Lage, eigenständig geeignete Eigenvektoren für die modale Entkopplung/Reduktion abhängig von der Problemstellung auszuwählen und somit das dynamische Verhalten mit reduziertem Rechenaufwand aber hinreichender Genauigkeit abzubilden.</td>
</tr>
<tr>
<td>Die Studierenden sind in der Lage, aufbauend auf der modalen Entkopplung und der statischen Reduktion (siehe Strukturdynamik) Verfahren zur Substrukturtechnik eigenständig zu gestalten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden können die Modale Transformation/Reduktion auf Schwingungssysteme mit vielen Freiheitsgraden anwenden.</td>
</tr>
<tr>
<td>Die Studierende können auf diesem Weg freie Schwingungen, erzwungene Schwingungen und die Gesamtschwingung berechnen.</td>
</tr>
<tr>
<td>Die Studierenden sind in der Lage, das dynamische Verhalten von schwingungsfähigen Systemen mit Hilfe der modalen Transformation/Reduktion zu analysieren.</td>
</tr>
<tr>
<td>Die Studierenden sind in der Lage, eigenständig verschiedene Grade der modalen Reduktion miteinander zu vergleichen und hinsichtlich der Eignung für die vorliegende Problemstellung zu bewerten.</td>
</tr>
<tr>
<td>Sie sind in der Lage, wissenschaftliche Informationen zur numerischen Modalanalyse zu beschaffen, zu verstehen und weiterführende Schlüsse daraus zu ziehen.</td>
</tr>
<tr>
<td>Die Studierenden sind in der Lage, eigenständig geeignete Eigenvektoren für die modale Entkopplung/Reduktion abhängig von der Problemstellung auszuwählen und somit das dynamische Verhalten mit reduziertem Rechenaufwand aber hinreichender Genauigkeit abzubilden.</td>
</tr>
<tr>
<td>Die Studierenden sind in der Lage, aufbauend auf der modalen Entkopplung und der statischen Reduktion (siehe Strukturdynamik) Verfahren zur Substrukturtechnik eigenständig zu gestalten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Numerische Modalanalyse Praktikum [NMA.P]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lernziele Kenntnisse</td>
</tr>
<tr>
<td>Die Studierenden kennen verschiedene Werkzeuge zur numerischen Modalanalyse von Aufgabenstellungen der Mehrfreiheitsgradschwinger.</td>
</tr>
</tbody>
</table>
| Sie erkennen die numerische Modalanalyse als ein Berechnungs-
vom Rahmen der Methode der finiten Elemente. |
| Lernziele Fertigkeiten |
| Die Studierenden können die Vorgehensweise zur Vorbereitung, Durchführung und Auswertung rechnergestützter Analysen mit Hilfe der numerischen Modalanalyse bei Aufgabenstellungen zur Schwingungsdynamik anhand von Beispielen erläutern. |
| Die Studierenden sind in der Lage, sich die hierfür notwendigen Informationen, Randbedingungen und Annahmen zu erarbeiten. |
| Lernziele Kompetenzen |
| Die Studierenden können rechnergestützte Analysen von Aufgabenstellungen zur numerischen Modalanalyse durchführen. |
| Die Studierenden sind in der Lage, die Berechnungsergebnisse graphisch zu visualisieren und zu dokumentieren. |
| Die Studierenden sind dazu fähig, ihre eigenen und fremden Berechnungsergebnisse aus der numerischen Modalanalyse zu analysieren. |
| Die Studierenden sind in der Lage, die Berechnungsergebnisse zu bewerten und gegebenenfalls mit zulässigen Größen zu vergleichen. |
| Die Studierenden sind eigenständig in der Lage aufbauend auf den bisherigen Kenntnissen zur numerischen Modalanalyse weitere Reduktionstechniken wie z.B. Substrukturtechniken zu erarbeiten und mit Hilfe der zur Verfügung stehenden rechnergestützten Werkzeuge umzusetzen. |

4 Lehr und Lernformen

<table>
<thead>
<tr>
<th>Numerische Modalanalyse (NMA.V): Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerische Modalanalyse Praktikum (NMA.P): Praktikum im Labor (P)</td>
</tr>
</tbody>
</table>

5 Arbeitsaufwand und Credit Points

<table>
<thead>
<tr>
<th>Numerische Modalanalyse: 4 CP, Präsenzzeit 42 h, Selbststudium 78 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numerische Modalanalyse Praktikum: 1 CP, Präsenzzeit 14 h, Selbststudium 16 h</td>
</tr>
</tbody>
</table>

6 Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

<table>
<thead>
<tr>
<th>Modulprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Modulprüfung erfolgt als schriftliche Klausurprüfung gemäß § 12 und umfasst die Lehrveranstaltung</td>
</tr>
<tr>
<td>Numerische Modalanalyse</td>
</tr>
</tbody>
</table>
Wird die Modulprüfung als schriftliche Klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsduer 0 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.

Prüfungsverteilung in der Lehrveranstaltung (Regel-Prüfungsform)

- Numerische Modalanalyse Praktikum (unbenotet, Hausarbeit, Praxisbericht, Projektbericht gemäß § 13 Absatz 3)

Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.

7 Notwendige Kenntnisse

8 Empfohlene Kenntnisse

- Numerische Modalanalyse (NMA.V):
 - Höhere Mathematik; Technische Mechanik, Maschinendynamik; Strukturmechanik
- Numerische Modalanalyse Praktikum (NMA.P):
 - Höhere Mathematik; Maschinendynamik; Strukturmechanik; gleichzeitiger Besuch der Vorlesung Numerische Modalanalyse

9 Dauer, zeitliche Gliederung und Häufigkeit des Angebots

- Numerische Modalanalyse: 3 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat
- Numerische Modalanalyse Praktikum: 1 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat

10 Verwendbarkeit des Moduls

11 Literatur

- **Numerische Modalanalyse:**
- **Numerische Modalanalyse Praktikum:**
 - Ergänzend zu der Literatur zur Vorlesung Regelungstechnik
 - Ochs, W.; Erste Schritte mit Matlab; Hochschule Darmstadt
Modul 5 Technische Analyse und Optimierung

<table>
<thead>
<tr>
<th></th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Technische Analyse und Optimierung</td>
</tr>
</tbody>
</table>

1.1 Modulkurzbezeichnung

TAO

1.2 Art

Wahlpflichtmodul

1.3 Lehrveranstaltungen

- Technische Analyse und Optimierung (TAO.V)
- Technische Analyse und Optimierung Praktikum (TAO.P)

1.4 Semester

- Technische Analyse und Optimierung (TAO.V): Keine Fachsemesterbindung
- Technische Analyse und Optimierung Praktikum (TAO.P): Keine Fachsemesterbindung

1.5 Modulverantwortliche Person

Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat

1.6 Weitere Lehrende

Weitere Lehrende nach aktueller Festlegung durch das Dekanat

1.7 Studiengangsniveau

Master

1.8 Lehrsprache

Deutsch oder Englisch nach Ankündigung durch das Dekanat

2 Inhalt

Technische Analyse und Optimierung (TAO.V):
- Statistische Versuchsplanung; Modellbildung; Residuenanalyse; Zielgrößenoptimierung.

Technische Analyse und Optimierung Praktikum (TAO.P):
- Statistische Versuchsplanung; Modellbildung; Residuenanalyse; Zielgrößenoptimierung.

3 Ziele

3.1 Ziele

Technische Analyse und Optimierung (TAO.V):

- **Lernziele Kenntnisse**
 - Die Studierenden können statistische Versuchsplanung einsetzen.

- **Lernziele Fertigkeiten**
 - Die Studierenden verstehen die Möglichkeiten statistischer Versuchsplanung.

- **Lernziele Kompetenzen**
 - Die Studierenden können mittels der Software Minitab statistischer Versuchsplanung durchführen.
 - Die Studierenden können statistische Versuchsprogramme analysieren und daraus auf Optimierungen schließen.
 - Die Studierenden sind in der Lage, eigenständige Untersuchungen durchzuführen und zu überprüfen.
 - Die Studierenden können Einflußgrößen im Zusammenhang beurteilen und daraus Zielgrößen optimieren.

Technische Analyse und Optimierung Praktikum (TAO.P):

- **Lernziele Kenntnisse**
 - Die Studierenden können statistische Versuchsplanung einsetzen.

- **Lernziele Fertigkeiten**
 - Die Studierenden verstehen die Möglichkeiten statistischer Versuchsplanung.
Lernziele Kompetenzen
- Die Studierenden können mittels der Software Minitab statistischer Versuchsplanung durchführen.
- Die Studierenden können statistische Versuchsprogramme analysieren und daraus auf Optimierungen schließen.
- Die Studierenden sind in der Lage, eigenständige Untersuchungen durchzuführen und zu überprüfen.
- Die Studierenden können Einflußgrößen im Zusammenhang beurteilen und daraus Zielgrößen optimieren.

4 Lehr und Lernformen
Technische Analyse und Optimierung [TAO.V]: Vorlesung [V]
Technische Analyse und Optimierung Praktikum [TAO.P]: Praktikum im Labor [P]
Die Dozentin oder der Dozent kann für die Lehrveranstaltungen des Moduls Anwesenheitspflicht festlegen.
Einsatz von wechselnden Medien nach den im Hörsaal, Seminarraum oder Laborraum gegebenen Möglichkeiten.

5 Arbeitsaufwand und Credit Points
Technische Analyse und Optimierung: 4 CP, Präsenzzeit 42 h, Selbststudium 78 h
Technische Analyse und Optimierung Praktikum: 1 CP, Präsenzzeit 14 h, Selbststudium 16 h

6 Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Modulprüfung
Die Modulprüfung erfolgt als schriftliche Klausurprüfung gemäß § 12 und umfasst die Lehrveranstaltung
- Technische Analyse und Optimierung

Wird die Modulprüfung als schriftliche Klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsdauer 0 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.

Prüfungsvorleistung in der Lehrveranstaltung (Regel-Prüfungsform)
- Technische Analyse und Optimierung Praktikum [unbenotet, Hausarbeit, Praxisbericht, Projektbericht gemäß § 13 Absatz 3]
Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.

7 Notwendige Kenntnisse

8 Empfohlene Kenntnisse
Technische Analyse und Optimierung [TAO.V]:
- Umfassende Kenntnisse und Fähigkeiten auf dem Gebiet Mathematik für Ingenieure

Technische Analyse und Optimierung Praktikum [TAO.P]:
- Umfassende Kenntnisse und Fähigkeiten auf dem Gebiet Mathematik für Ingenieure

9 Dauer, zeitliche Gliederung und Häufigkeit des Angebots
Technische Analyse und Optimierung: 3 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat
Technische Analyse und Optimierung Praktikum: 1 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat

10 Verwendbarkeit des Moduls

11 Literatur
Technische Analyse und Optimierung:
- Weitere Literaturhinweise werden in der Veranstaltung gegeben. Die Literatur wird jeweils in
der neuesten verfügbaren Auflage verwendet.

Technische Analyse und Optimierung Praktikum:
- Weitere Literaturhinweise werden in der Veranstaltung gegeben. Die Literatur wird jeweils in
− der neuesten verfügbaren Auflage verwendet.
Wahlpflichtmodule Katalog MMT-BR
Modul 1 Modellbildung, Simulation und Identifikation

<table>
<thead>
<tr>
<th></th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Modellbildung, Simulation und Identifikation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.1</th>
<th>Modulkurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MSI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2</th>
<th>Art</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modellbildung Identifikation und Simulation (MIS.V)</td>
</tr>
<tr>
<td></td>
<td>Modellbildung Identifikation und Simulation, Labor (MIS.P)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.4</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modellbildung Identifikation und Simulation (MIS.V): 2. Fachsemester</td>
</tr>
<tr>
<td></td>
<td>Modellbildung Identifikation und Simulation, Labor (MIS.P): 2. Fachsemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.5</th>
<th>Modulverantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.6</th>
<th>Weitere Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weitere Lehrende nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.7</th>
<th>Studiengangsniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.8</th>
<th>Lehrsprache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deutsch oder Englisch nach Ankündigung durch das Dekanat</td>
</tr>
</tbody>
</table>

Inhalt

<table>
<thead>
<tr>
<th>Modellbildung Identifikation und Simulation (MIS.V):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modellbildung Identifikation und Simulation, Labor (MIS.P):</th>
</tr>
</thead>
</table>

Ziele

<table>
<thead>
<tr>
<th>Modellbildung Identifikation und Simulation (MIS.V):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modellbildung Identifikation und Simulation, Labor (MIS.P):</th>
</tr>
</thead>
</table>

Lehr und Lernformen

<table>
<thead>
<tr>
<th>Modellbildung Identifikation und Simulation (MIS.V): Vorlesung (V)</th>
</tr>
</thead>
</table>
modellbildung identifikation und simulation, labor [mis.p]: praktikum im labor [p]

die dozentin oder der dozent kann für die lehrveranstaltungen des moduls anwesenheitspflicht festlegen.
einsatz von wechselnden medien nach den im hörsaal, seminarraum oder laborraum gegebenen möglicherkeiten.

<table>
<thead>
<tr>
<th>5</th>
<th>arbeitsaufwand und credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>modellbildung identifikation und simulation: 4 cp, präsenzzeit 42 h, Selbststudium 78 h</td>
<td></td>
</tr>
<tr>
<td>modellbildung identifikation und simulation, labor: 1 cp, präsenzzeit 14 h, Selbststudium 16 h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>prüfungsform, prüfungsdauer und prüfungsvoraussetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>modulprüfung</td>
<td></td>
</tr>
<tr>
<td>die modulprüfung erfolgt als schriftliche klausurprüfung gemäß § 12 und umfasst die lehrveranstaltung</td>
<td></td>
</tr>
<tr>
<td>- modellbildung identifikation und simulation</td>
<td></td>
</tr>
<tr>
<td>wird die modulprüfung als schriftliche klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsdauer 0 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.</td>
<td></td>
</tr>
<tr>
<td>prüfungsvorleistung in der lehrveranstaltung (Regel-Prüfungsform)</td>
<td></td>
</tr>
<tr>
<td>- modellbildung identifikation und simulation, labor [unbenotet, Hausarbeit, Praxisbericht, Projektbericht gemäß § 13 Absatz 3]</td>
<td></td>
</tr>
<tr>
<td>Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>notwendige Kenntnisse</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>empfohlene Kenntnisse</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>dauer, zeitliche gliederung und häufigkeit des angebots</th>
</tr>
</thead>
<tbody>
<tr>
<td>modellbildung identifikation und simulation: 3 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat</td>
<td></td>
</tr>
<tr>
<td>modellbildung identifikation und simulation, labor: 1 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>verwendbarkeit des moduls</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>modellbildung identifikation und simulation:</td>
<td></td>
</tr>
<tr>
<td>- Die Literaturhinweise des Moduls sind im Modulhandbuch Bachelor Mechatronik beschrieben. Die Modulbeschreibung ist im Abschnitt "Fremdmodule" diesem Modulhandbuch beigefügt. Es gilt die jeweils aktuelle Modulbeschreibung der Ursprungstudiengangs.</td>
<td></td>
</tr>
<tr>
<td>modellbildung identifikation und simulation, labor:</td>
<td></td>
</tr>
<tr>
<td>- Die Literaturhinweise des Moduls sind im Modulhandbuch Bachelor Mechatronik beschrieben. Die Modulbeschreibung ist im Abschnitt "Fremdmodule" diesem Modulhandbuch beigefügt. Es gilt die jeweils aktuelle Modulbeschreibung der Ursprungstudiengangs.</td>
<td></td>
</tr>
</tbody>
</table>
Modul 2 Starrkörperdynamik

<table>
<thead>
<tr>
<th>1</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Starrkörperdynamik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.1</th>
<th>Modulkurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SKD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2</th>
<th>Art</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Starrkörperdynamik (SD.V)</td>
</tr>
<tr>
<td></td>
<td>Starrkörperdynamik Praktikum (SD.P)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.4</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Starrkörperdynamik (SD.V): 2. Fachsemester</td>
</tr>
<tr>
<td></td>
<td>Starrkörperdynamik Praktikum (SD.P): 2. Fachsemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.5</th>
<th>Modulverantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.6</th>
<th>Weitere Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weitere Lehrende nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.7</th>
<th>Studiengangsniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.8</th>
<th>Lehrsprache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deutsch oder Englisch nach Ankündigung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Starrkörperdynamik (SD.V):</td>
</tr>
<tr>
<td></td>
<td>Die Inhalte des Moduls sind im Modulhandbuch Bachelor Mechatronik beschrieben. Die Modulbeschreibung ist im Abschnitt "Fremdmodule" diesem Modulhandbuch beigefügt. Es gilt die jeweils aktuelle Modulbeschreibung der Ursprungstudiengangs.</td>
</tr>
<tr>
<td></td>
<td>Starrkörperdynamik Praktikum (SD.P):</td>
</tr>
<tr>
<td></td>
<td>Die Inhalte des Moduls sind im Modulhandbuch Bachelor Mechatronik beschrieben. Die Modulbeschreibung ist im Abschnitt "Fremdmodule" diesem Modulhandbuch beigefügt. Es gilt die jeweils aktuelle Modulbeschreibung der Ursprungstudiengangs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Ziele</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Starrkörperdynamik (SD.V):</td>
</tr>
<tr>
<td></td>
<td>Lernziele Kompetenzen</td>
</tr>
<tr>
<td></td>
<td>Die Ziele des Moduls sind im Modulhandbuch Bachelor Mechatronik beschrieben. Die Modulbeschreibung ist im Abschnitt "Fremdmodule" diesem Modulhandbuch beigefügt. Es gilt die jeweils aktuelle Modulbeschreibung der Ursprungstudiengangs.</td>
</tr>
<tr>
<td></td>
<td>Starrkörperdynamik Praktikum (SD.P):</td>
</tr>
<tr>
<td></td>
<td>Lernziele Kompetenzen</td>
</tr>
<tr>
<td></td>
<td>Die Ziele des Moduls sind im Modulhandbuch Bachelor Mechatronik beschrieben. Die Modulbeschreibung ist im Abschnitt "Fremdmodule" diesem Modulhandbuch beigefügt. Es gilt die jeweils aktuelle Modulbeschreibung der Ursprungstudiengangs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Starrkörperdynamik (SD.V): Vorlesung (V)</td>
</tr>
<tr>
<td>5</td>
<td>Arbeitsaufwand und Credit Points</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Starrkörperdynamik Praktikum (SD.P): Praktikum im Labor (P)</td>
<td></td>
</tr>
<tr>
<td>Die Dozentin oder der Dozent kann für die Lehrveranstaltungen des Moduls Anwesenheitspflicht festlegen.</td>
<td></td>
</tr>
<tr>
<td>Einsatz von wechselnden Medien nach den im Hörsaal, Seminarraum oder Laborraum gegebenen Möglichkeiten.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Arbeitsaufwand und Credit Points</td>
</tr>
<tr>
<td>Starrkörperdynamik: 5 CP, Präsenzzeit 56 h, Selbststudium 94 h</td>
<td></td>
</tr>
<tr>
<td>Starrkörperdynamik Praktikum: 0 CP, Präsenzzeit 14 h, Selbststudium -14 h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulprüfung</td>
<td></td>
</tr>
<tr>
<td>Die Modulprüfung erfolgt als schriftliche Klausurprüfung gemäß § 12 und umfasst die Lehrveranstaltung</td>
<td></td>
</tr>
<tr>
<td>− Starrkörperdynamik</td>
<td></td>
</tr>
<tr>
<td>Wird die Modulprüfung als schriftliche Klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsdauer 0 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.</td>
<td></td>
</tr>
<tr>
<td>Prüfungsvorleistung in der Lehrveranstaltung (Regel-Prüfungsform)</td>
<td></td>
</tr>
<tr>
<td>− Starrkörperdynamik Praktikum (unbenotet, Hausarbeit, Praxisbericht, Projektbericht gemäß § 13 Absatz 3)</td>
<td></td>
</tr>
<tr>
<td>Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Notwendige Kenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Empfohlene Kenntnisse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Dauer, zeitliche Gliederung und Häufigkeit des Angebots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starrkörperdynamik: 4 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat</td>
<td></td>
</tr>
<tr>
<td>Starrkörperdynamik Praktikum: 1 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Literatur</td>
</tr>
<tr>
<td>Starrkörperdynamik:</td>
<td></td>
</tr>
<tr>
<td>− Die Literaturhinweise des Moduls sind im Modulhandbuch Bachelor Mechatronik beschrieben. Die Modulbeschreibung ist im Abschnitt “Fremdmodule” diesem Modulhandbuch beigefügt. Es gilt die jeweils aktuelle Modulbeschreibung der Ursprungstudiengangs.</td>
<td></td>
</tr>
<tr>
<td>Starrkörperdynamik Praktikum:</td>
<td></td>
</tr>
<tr>
<td>− Die Literaturhinweise des Moduls sind im Modulhandbuch Bachelor Mechatronik beschrieben. Die Modulbeschreibung ist im Abschnitt “Fremdmodule” diesem Modulhandbuch beigefügt. Es gilt die jeweils aktuelle Modulbeschreibung der Ursprungstudiengangs.</td>
<td></td>
</tr>
</tbody>
</table>
Wahlpflichtmodule Katalog UOWP
Modul 1 Advanced Business Simulation

<table>
<thead>
<tr>
<th>1</th>
<th>Modulname</th>
<th>Advanced Business Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Modulkurzbezeichnung</td>
<td>ABS</td>
</tr>
<tr>
<td>1.2</td>
<td>Art</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>1.3</td>
<td>Lehrveranstaltungen</td>
<td>Advanced Business Simulation UoWp (ABS.V)</td>
</tr>
<tr>
<td>1.4</td>
<td>Semester</td>
<td>3. Fachsemester</td>
</tr>
<tr>
<td>1.5</td>
<td>Modulverantwortliche Person</td>
<td>Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat</td>
</tr>
<tr>
<td>1.6</td>
<td>Weitere Lehrende</td>
<td>Weitere Lehrende nach aktueller Festlegung durch das Dekanat</td>
</tr>
<tr>
<td>1.7</td>
<td>Studiengangsniveau</td>
<td>Master</td>
</tr>
<tr>
<td>1.8</td>
<td>Lehrsprache</td>
<td>Deutsch oder Englisch nach Ankündigung durch das Dekanat</td>
</tr>
</tbody>
</table>

2 Inhalt
- Durchführung eines Unternehmensplanspiels; Erstellen eines Unternehmensstrategie; Kostenstruktur/Finanzierung; Reaktion auf äußere Faktoren wie Wettbewerb, verändertes Kundenverhalten, Liederengpässe, etc.; Betriebsoptimierung / Qualitätsmanagement; Marketing

3 Ziele
Lernziele Kenntnisse

Lernziele Fertigkeiten
- Die Absolventen verstehen die betrieblichen Funktionen und Abläufen in einem Unternehmen

Lernziele Kompetenzen
- Die Absolventen können innerhalb Methoden und verfahren der Unternehmensführung und -steuerung anwenden.
- Die Absolventen sind in der Lage ein Unternehmen und dessen Unternehmensführung zu analysieren. Sie können verschiedenen Varianten der Unternehmensführung gegenüberstellen.
- Die Absolventen können Unternehmen und dessen Unternehmensführung zu bewerten. Sie können verschiedenen Varianten der Unternehmensführung voneinander unterscheiden.
- Die Absolventen sind fähig ein Unternehmen zu führen und die Strategie zu gestalten.

4 Lehr und Lernformen
Vorlesung [V]
<table>
<thead>
<tr>
<th>5</th>
<th>Arbeitsaufwand und Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 CP, Präsenzzeit 56 h, Selbststudium 94 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulprüfung</td>
</tr>
<tr>
<td></td>
<td>Die Modulprüfung erfolgt als schriftliche Klausurprüfung gemäß § 12 und umfasst die Lehrveranstaltung</td>
</tr>
<tr>
<td></td>
<td>– Advanced Business Simulation UoWp</td>
</tr>
<tr>
<td></td>
<td>Wird die Modulprüfung als schriftliche Klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsdauer 0 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.</td>
</tr>
<tr>
<td></td>
<td>Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Notwendige Kenntnisse</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Empfohlene Kenntnisse</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Dauer, zeitliche Gliederung und Häufigkeit des Angebots</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

| 10 | Verwendbarkeit des Moduls |

<table>
<thead>
<tr>
<th>11</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>– Einführung in die allgemeine Betriebswirtschaftslehre,</td>
</tr>
<tr>
<td></td>
<td>– Günter Wöhe, Vahlen Verlag, Weitere Literaturhinweise werden in der Veranstaltung gegeben. Die Literatur wird jeweils in der neuesten verfügbaren Auflage verwendet</td>
</tr>
</tbody>
</table>
Modul 2 Betriebliches Ideen- und Innovationsmanagement

<table>
<thead>
<tr>
<th></th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Betriebliches Ideen- und Innovationsmanagement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.1</th>
<th>Modulkurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BII</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2</th>
<th>Art</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Betriebliches Ideen- und Innovationsmanagement UoWp (BIIM.V)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.4</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3. Fachsemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.5</th>
<th>Modulverantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.6</th>
<th>Weitere Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weitere Lehrende nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.7</th>
<th>Studiengangsniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.8</th>
<th>Lehrsprache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deutsch oder Englisch nach Ankündigung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Einleitung;</td>
</tr>
<tr>
<td></td>
<td>Grundlagen des Innovationsmanagements;</td>
</tr>
<tr>
<td></td>
<td>Innovationsstrategien;</td>
</tr>
<tr>
<td></td>
<td>Innovationsprozess;</td>
</tr>
<tr>
<td></td>
<td>Ideenmanagement;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Ziele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lernziele Kenntnisse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die Studierenden können Grundlagen des Innovationsmanagements, verschiedene Innovationsstrategien, den Innovationsprozess sowie die grundlegende Elemente des Ideenmanagements benennen und umreißen.</td>
</tr>
</tbody>
</table>

Lernziele Fertigkeiten |

Lernziele Kompetenzen |
	Die Studierenden sind in der Lage, Kreativitätstechniken wie Brainstorming, Mindmapping, 6-3-5-Methode, SIT anzuwenden und gewonnene Ideen effektiv und effizient zu bewerten.
	Die Studierenden können einfache Ideengenerierungsprozesse entwerfen und die SWOT-Analyse durchführen.
	Die Studierenden können Innovationsstrategien analysieren und daraus auf die Entwicklungsaufgaben und -aktivitäten eines Unternehmens schließen.
	Die Studierenden sind in der Lage, eigenständig Ideengenerierungsmethoden aufgabenbezogen auszuwählen und die gewonnenen Ideen hinsichtlich Attraktivität zu bewerten.
	Die Studierenden können Innovationsziele, Innovationsstrategien und Kundenanforderungen im Zusammenhang beurteilen und daraus Kriterien für erfolgreiche Produkte sowie konkrete Ideen für die technische Umsetzung entwickeln.

| 4 | Lehr und Lernformen |

Modulhandbuch des Studiengangs Mechatronik [M.Sc.] der Hochschule Darmstadt
<table>
<thead>
<tr>
<th></th>
<th>Vorlesung (V)</th>
</tr>
</thead>
</table>

5 | Arbeitsaufwand und Credit Points |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 CP, Präsenzzeit 56 h, Selbststudium 94 h</td>
</tr>
</tbody>
</table>

6 | Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulprüfung</td>
</tr>
<tr>
<td></td>
<td>Die Modulprüfung erfolgt als schriftliche Klausurprüfung gemäß § 12 und umfasst die Lehrveranstaltung</td>
</tr>
<tr>
<td></td>
<td>− Betriebliches Ideen- und Innovationsmanagement UoWp</td>
</tr>
<tr>
<td></td>
<td>Wird die Modulprüfung als schriftliche Klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsdauer 0 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.</td>
</tr>
<tr>
<td></td>
<td>Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.</td>
</tr>
</tbody>
</table>

7 | Notwendige Kenntnisse |

8 | Empfohlene Kenntnisse |

9 | Dauer, zeitliche Gliederung und Häufigkeit des Angebots |
| | 4 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat |

10 | Verwendbarkeit des Moduls |

11 | Literatur |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>− Dietmar Vahs, Alexander Brem: Innovationsmanagement - Von der Idee zur erfolgreichen Vermarktung; 5. Auflage, 2015; Schäffer-Poeschel Verlag Stuttgart</td>
</tr>
<tr>
<td></td>
<td>− Weitere in der Vorlesung genannte Literatur.</td>
</tr>
</tbody>
</table>
Modul 3 Controlling

<table>
<thead>
<tr>
<th>1</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Controlling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.1</th>
<th>Modulkurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CON</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2</th>
<th>Art</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Controlling UoWp (COG.V)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.4</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3. Fachsemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.5</th>
<th>Modulverantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.6</th>
<th>Weitere Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weitere Lehrende nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.7</th>
<th>Studiengangsniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.8</th>
<th>Lehrsprache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deutsch oder Englisch nach Ankündigung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>− Verfahren des Controllings, Methoden der Kostenstellenrechnung, Finanzstromanalyse, Assetbewertung; Substanzwertmethode, Liquidationswertverfahren, Stuttgarter Verfahren, Multiplikatorenmethoden, Ertragswertverfahren, Discounted Cashflow; Verfahren, Anwendungsbeispiele</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Ziele</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lernziele Kenntnisse</td>
</tr>
<tr>
<td></td>
<td>− Absolventen verfügen insbesondere über vertiefte Kenntnisse in den betrieblichen Funktionen und Abläufen eines Unternehmens und hierbei insb. des Controllings und der Controllingmethoden in einem Unternehmen</td>
</tr>
<tr>
<td></td>
<td>Lernziele Fertigkeiten</td>
</tr>
<tr>
<td></td>
<td>− Die Absolventen können Methoden des Controllings unterscheiden und verstehen deren Hintergründe, mit denen sie die Finanzströme und Assetts in den betrieblichen Funktionen und Abläufen eines Unternehmens abbilden.</td>
</tr>
<tr>
<td></td>
<td>Lernziele Kompetenzen</td>
</tr>
<tr>
<td></td>
<td>− Die Absolventen können ein Methoden des Controllings in einem Unternehmen nutzen und anwenden.</td>
</tr>
<tr>
<td></td>
<td>− Die Absolventen sind in der Lage das Controlling eines Unternehmens zu analysieren und zu bewerten.</td>
</tr>
<tr>
<td></td>
<td>− Die Studierenden sind in der Lage ein Unternehmen mit entsprechenden buchhalterischen und finanzenchnischen Methoden zu kontrollieren und zu bewerten.</td>
</tr>
<tr>
<td></td>
<td>− Absolventen können ein Controlling-System für ein Unternehmen gestalten und implementieren.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung [V]</td>
</tr>
<tr>
<td></td>
<td>Die Dozentin oder der Dozent kann für die Lehrveranstaltungen des Moduls Anwesenheitspflicht festlegen.</td>
</tr>
<tr>
<td></td>
<td>Einsatz von wechselnden Medien nach den im Hörsaal, Seminarraum oder Laborraum gegebenen Möglichkeiten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Arbeitsaufwand und Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 CP, Präsenzzeit 56 h, Selbststudium 94 h</td>
</tr>
</tbody>
</table>
6 Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Modulprüfung

Die Modulprüfung erfolgt als schriftliche Klausurprüfung gemäß § 12 und umfasst die Lehrveranstaltung

- Controlling UoWp

Wird die Modulprüfung als schriftliche Klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsdauer 0 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.

Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.

7 Notwendige Kenntnisse

8 Empfohlene Kenntnisse

9 Dauer, zeitliche Gliederung und Häufigkeit des Angebots

4 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat

10 Verwendbarkeit des Moduls

11 Literatur

- Methoden des Controllings; Schacht, Ulrich; Fackler, Matthias: Praxishandbuch Controlling Grundlagen, Methoden, Fallbeispiele; Wiehle, Ulrich; Diegelmann: Rechenbeispiel; Verwendet werden jeweils die neuesten Auflagen. Weitere Literaturhinweise werden in den Lehrveranstaltungen gegeben
Modul 4 Gewerblicher Rechtsschutz

<table>
<thead>
<tr>
<th>1</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gewerblicher Rechtsschutz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.1</th>
<th>Modulkurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GRS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2</th>
<th>Art</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gewerblicher Rechtsschutz UoWp (GR.V)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.4</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3. Fachsemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.5</th>
<th>Modulverantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.6</th>
<th>Weitere Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weitere Lehrende nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.7</th>
<th>Studiengangsniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.8</th>
<th>Lehrsprache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deutsch oder Englisch nach Ankündigung durch das Dekanat</td>
</tr>
</tbody>
</table>

2 Inhalt
- Materielles Patentrecht, formales Patentrecht, Neuheit, erfinderische Tätigkeit, Anmeldeverfahren (Inland, Ausland, Aufrechterhaltungsentscheidung), Streitverfahren, Arbeitnehmererfinderrecht, Marken

3 Ziele
- **Lernziele Kenntnisse**
 - Grundlegende Unterschiede zwischen den technischen und nicht-technischen Schutzrechten kennen und benennen können (Patente und Gebrauchsmuster vs. Marken, Geschmacksmuster und Urheberrecht, wichtige Fristen im Patentrecht: Prioritätsjahr, Offenlegungsfrist, maximale Laufzeit eines Patents, Einspruchfristen in DE und EP.
- **Lernziele Fertigkeiten**
 - Umgang mit den Fristen, Konsequenzen bei Fristversäumnis,
- **Lernziele Kompetenzen**
 - Technische Interpretation und rechtliche Wertung der Informationen auf der ersten Seite einer beliebigen, auch fremdsprachlichen Patentpublikation
 - Recherche mittels IPC, Zusammenfassung, Patentfamilien, Übersetzungen, Beschaffung von kostenlosen Patentinformationen aus dem Internet, Grenzen dieses Verfahrens, kostenpflichtige Patentinformation, Patentinformationszentren in DE
 - Analyse der Ergebnisse der Recherche, patentstrategische Ansätze entwickeln, Neuheitsfrage klären, Angriffe gegen störende Wettbewerbsschutzrechte planen
 - Abfassen von Erfindungsmeldungen und Patententwürfen, Mitarbeit bei der Entwicklung Patentstrategien

4 Lehr und Lernformen
- **Vorlesung [V]**
 - Die Dozentin oder der Dozent kann für die Lehrveranstaltungen des Moduls Anwesenheitspflicht festlegen.
 - Einsatz von wechselnden Medien nach den im Hörsaal, Seminarraum oder Laborraum gegebenen Möglichkeiten.
<table>
<thead>
<tr>
<th>5</th>
<th>Arbeitsaufwand und Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>§ CP, Präsenzzeit 56 h, Selbststudium 94 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulprüfung</td>
</tr>
<tr>
<td></td>
<td>Die Modulprüfung erfolgt als schriftliche Klausurprüfung gemäß § 12 und umfasst die Lehrveranstaltung</td>
</tr>
<tr>
<td></td>
<td>- Gewerblicher Rechtsschutz UoWp</td>
</tr>
<tr>
<td></td>
<td>Wird die Modulprüfung als schriftliche Klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsdauer 0 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.</td>
</tr>
<tr>
<td></td>
<td>Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.</td>
</tr>
</tbody>
</table>

| 7 | Notwendige Kenntnisse |

| 8 | Empfohlene Kenntnisse |

<table>
<thead>
<tr>
<th>9</th>
<th>Dauer, zeitliche Gliederung und Häufigkeit des Angebots</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

| 10 | Verwendbarkeit des Moduls |

<table>
<thead>
<tr>
<th>11</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Anfängertaugliche Literatur ist nicht vorhanden, Foliensätze werden in MOODLE zur Verfügung gestellt,</td>
</tr>
</tbody>
</table>
Modul 5 Integriertes Forschungsprojekt IV

1 Modulname
Integriertes Forschungsprojekt IV

1.1 Modulkurzbezeichnung
IW3

1.2 Art
Wahlpflichtmodul

1.3 Lehrveranstaltungen
Forschungsprojekt (IFP-FP)

1.4 Semester
Keine Fachsemesterbindung

1.5 Modulverantwortliche Person
Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat

1.6 Weitere Lehrende
Weitere Lehrende nach aktueller Festlegung durch das Dekanat

1.7 Studiengangsniveau
Master

1.8 Lehrsprache
Deutsch oder Englisch nach Ankündigung durch das Dekanat

2 Inhalt
− Das Ingenieur-Forschungsprojekt stellt einen Praxisblock im Masterstudium dar. Die inhaltliche Ausgestaltung dieses Praxisblocks soll den berufsfeldbezogenen Aufgabenstellungen entsprechen und erfolgt daher je nach Aufgabenstellung

3 Ziele
Lernziele Kenntnisse
− Die Studierenden kennen die ingenieurwissenschaftlichen Prinzipien in ausgewählten Gebieten des Maschinenbaus und der Kunststofftechnik sowie anwendungsorientierte Verfahren und Vorgehensweisen auf diesen Gebieten.

Lernziele Fertigkeiten

Lernziele Kompetenzen
− Die Studierenden sind fähig selbstständig wissenschaftlich zu arbeiten und komplexere Projekte zu organisieren, durchzuführen und zu leiten. Sie können die erlernten Kenntnisse in ausgewählten Gebieten so weit zu abstrahieren, dass sie auch neue Aufgaben selbstständig lösen können.
− Studierende sind befähigt für ausgewählte Gebiete des Maschinenbaus und der Kunststofftechnik Probleme systematisch zu analysieren und zu lösen, die bei der Entwicklung von Prozessen und Maschinen auftreten.
− Die Studierenden sind in der Lage ihr ingenieurwissenschaftliches Wissen einzusetzen um eigenständig komplexe Lösungen für neue Verfahren und Maschinen zu erarbeiten, zu beurteilen und zu bewerten.
− Die Studierenden sind befähigt eigenständig ein Entwicklungs-/ Forschungsprojekt mit allen Aspekten, die Bestandteil einer wissenschaftlichen Arbeit sind, als Vorstufe zur Masterarbeit konzeptionell zu entwickeln und durchzuführen.

4 Lehr und Lernformen

5 Arbeitsaufwand und Credit Points
5 CP, Präsenzzeit 1,4 h, Selbststudium 148,6 h

6 Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung
Modulprüfung
Die Modulprüfung erfolgt als Prüfungsstudienarbeit gemäß § 13 Absatz 2 und umfasst die Lehrveranstaltung
- Forschungsprojekt
Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.

7 Notwendige Kenntnisse

8 Empfohlene Kenntnisse
- Bachelorarbeit

9 Dauer, zeitliche Gliederung und Häufigkeit des Angebots
0,1 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat

10 Verwendbarkeit des Moduls

11 Literatur
- Je nach Aufgabenstellung
Modul 6 Kraft der Normung

1 Modulname
Kraft der Normung

1.1 Modulkurzbezeichnung
KDN

1.2 Art
Wahlpflichtmodul

1.3 Lehrveranstaltungen
Kraft der Normung (KDN.V)

1.4 Semester
Keine Fachsemesterbindung

1.5 Modulverantwortliche Person
Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat

1.6 Weitere Lehrende
Weitere Lehrende nach aktueller Festlegung durch das Dekanat

1.7 Studiengangsniveau
Master

1.8 Lehrsprache
Deutsch oder Englisch nach Ankündigung durch das Dekanat

2 Inhalt
− Formen von Normen: Sicherheit, Leistung, Prüfungen, Produkt-Definitionen, Management-Systeme, Kennzahlen, usw.[CR]
− Rolle von Normen (innerhalb der EU): gemeinsamer Markt, harmonisierte Normen, CE Richtlinien.[CR]
− Struktur und Aufbau von Normen (IEC, ISO, CEN, CENELEC, DIN, DKE, VDI)[CR]
− Aktive Gestaltung von Normen als Instrument: staatliche und organisatorische Sicht, Methoden und Möglichkeiten, Aufwände und Nutzen.[CR]
− Rolle der Normung im Bereich Nachhaltige Entwicklung.

3 Ziele
Lernziele Kenntnisse
− Die Studierenden kennen wichtige grundlegende Normen.

Lernziele Fertigkeiten
− Studierende können die Rolle wichtiger Akteure der Normung erläutern.[CR]
− Sie verstehen den Zusammenhang zwischen gesetzlichen Regelungen und dem Beitrag von Normen, insbesondere, wie mittels Normen Compliance mit Regularien erreicht werden kann.[CR]

Lernziele Kompetenzen
− Studierende finden sich im deutschen und internationalen Normenwerk zurecht und können zielgerichtet benötigte Normen recherchieren.[CR]
− Sie sind in der Lage, Normen bestimmungsgemäß anzuwenden.[CR]
− Sie können Normen in den ingenieurgemäßen Entwicklungsprozess einbeziehen und im Konstruktionsprozess relevante Normen in die Konstruktion integrieren. Dazu können sie relevante Anforderungen und Aspekte organisieren, strukturieren und zusammenfügen.[CR]
− Sie haben einen vertrauten Umgang mit allen Aspekten der Normung und können diese entsprechend ihrer Aufgabe für ihre Bedürfnisse anwenden.
- Studierende können Abschnitte in Normen analysieren und einordnen, sie können diese in den Gesamtzusammenhang ihrer Aufgabe einordnen.\[\text{CR}\]
- Sie können überlappende Anforderungen mehrerer Dokumente im Hinblick auf ihre Bedeutung und Anwendbarkeit vergleichen.
- Studierende können in Normen formulierte Anforderungen im Hinblick auf das Ziel der Norm bewerten.\[\text{CR}\]
- Sie können in einem Entwurfsprozess für eine Norm bewerten, ob Beiträge und Anmerkungen zielgerecht verfasst, relevant und sinnvoll sind.\[\text{CR}\]
- Sie können die Bedeutung einzelner Dokumente für das Erarbeiten einer Norm er messen und ggf. diese berücksichtigen.
- Studierende können selber aktiv an der Gestaltung von Normen mitwirken; sie können als Experte in einer Arbeitsgruppe, die eine Norm erarbeitet, agieren.

<table>
<thead>
<tr>
<th>4</th>
<th>Lehr und Lernformen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Arbeitsaufwand und Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 CP, Präsenzzeit 56 h, Selbststudium 94 h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulprüfung</td>
<td>Die Modulprüfung erfolgt als und umfasst die Lehrveranstaltung Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.</td>
</tr>
</tbody>
</table>

| 7 | Notwendige Kenntnisse |

| 8 | Empfohlene Kenntnisse |

<table>
<thead>
<tr>
<th>9</th>
<th>Dauer, zeitliche Gliederung und Häufigkeit des Angebots</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat</td>
<td></td>
</tr>
</tbody>
</table>

| 10 | Verwendbarkeit des Moduls |

<table>
<thead>
<tr>
<th>11</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>- cen guide</td>
<td></td>
</tr>
<tr>
<td>- blue guide - etc.</td>
<td></td>
</tr>
<tr>
<td>- http://www.iec.ch\[\text{CR}\]</td>
<td></td>
</tr>
<tr>
<td>- http://www.iso.ch\[\text{CR}\]</td>
<td></td>
</tr>
</tbody>
</table>
Modul 7 Produktionsmanagement

<table>
<thead>
<tr>
<th></th>
<th>Modulname</th>
<th>Produktionsmanagement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Modulkurzbezeichnung</td>
<td>PMT</td>
</tr>
<tr>
<td>1.2</td>
<td>Art</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>1.3</td>
<td>Lehrveranstaltungen</td>
<td>Produktionsmanagement (PMG)</td>
</tr>
<tr>
<td>1.4</td>
<td>Semester</td>
<td>Keine Fachsemesterbindung</td>
</tr>
<tr>
<td>1.5</td>
<td>Modulverantwortliche Person</td>
<td>Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat</td>
</tr>
<tr>
<td>1.6</td>
<td>Weitere Lehrende</td>
<td>Weitere Lehrende nach aktueller Festlegung durch das Dekanat</td>
</tr>
<tr>
<td>1.7</td>
<td>Studiengangsniveau</td>
<td>Master</td>
</tr>
<tr>
<td>1.8</td>
<td>Lehrsprache</td>
<td>Deutsch oder Englisch nach Ankündigung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Siehe Modulhandbuch des Studiengangs Master Wirtschaftsingenieurwesen des Fachbereichs Elektrotechnik und Informationstechnik der Hochschule Darmstadt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ziele</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Lernziele Kenntnisse</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden können ... benennen und umreißen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lehr und Lernformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td></td>
<td>Die Dozentin oder der Dozent kann für die Lehrveranstaltungen des Moduls Anwesenheitspflicht festlegen.</td>
</tr>
<tr>
<td></td>
<td>Einsatz von wechselnden Medien nach den im Hörsaal, Seminarraum oder Laborraum gegebenen Möglichkeiten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Arbeitsaufwand und Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5 CP, Präsenzzeit 56 h, Selbststudium 94 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Modulprüfung</td>
</tr>
<tr>
<td></td>
<td>Die Modulprüfung erfolgt als schriftliche Klausurprüfung gemäß § 12 und umfasst die Lehrveranstaltung</td>
</tr>
<tr>
<td></td>
<td>Produktionsmanagement</td>
</tr>
<tr>
<td></td>
<td>Wird die Modulprüfung als schriftliche Klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsdauer 0 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.</td>
</tr>
<tr>
<td></td>
<td>Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.</td>
</tr>
</tbody>
</table>

<p>| | Notwendige Kenntnisse |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Empfohlene Kenntnisse</td>
</tr>
<tr>
<td>9</td>
<td>Dauer, zeitliche Gliederung und Häufigkeit des Angebots</td>
</tr>
<tr>
<td></td>
<td>4 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat</td>
</tr>
<tr>
<td>10</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>11</td>
<td>Literatur</td>
</tr>
</tbody>
</table>
Modul 8 Qualitätsmanagement

<table>
<thead>
<tr>
<th>1</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Qualitätsmanagement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.1</th>
<th>Modulkurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QMT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2</th>
<th>Art</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Qualitätsmanagement UoWp [QM.V]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.4</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3. Fachsemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.5</th>
<th>Modulverantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.6</th>
<th>Weitere Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weitere Lehrende nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.7</th>
<th>Studiengangsniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.8</th>
<th>Lehrsprache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deutsch oder Englisch nach Ankündigung durch das Dekanat</td>
</tr>
</tbody>
</table>

Inhalt
- Einführung in das Qualitätsmanagement
- Prozessmanagement
- Vorstellung der ISO 9000-Familie
- Motivation und Umgang mit Veränderungen
- Dokumentation im Qualitätsmanagement
- Ablauf und Nutzen interner Audits
- Kundenanforderungen erkennen und bewerten
- Kommunikation mit internen und externen Parteien
- Rechtliche Aspekte des Qualitätsmanagements
- Berichtswesen und Kennzahlen
- Kontinuierlicher Verbesserungsprozess
- 7 Grundwerkzeuge des Qualitätsmanagements
- QM-Methoden für besondere Aufgabenstellungen

Ziele

Lernziele Kenntnisse
- Die Studierenden haben theoretische Kenntnisse zum Qualitätsmanagement, Prozessmanagement und den einschlägigen Normen erlangt. Sie kennen die Grundzüge der QM-Dokumentation und Durchführung von Audits und haben die rechtliche Aspekte des Qualitätsmanagements kennengelernt.

Lernziele Fertigkeiten
- Die Studierenden verstehen die Grundzüge des Qualitätsmanagements, die verschiedenen Rollen in Unternehmen und die Bedeutung und Gestaltung von Prozessen für das Qualitätsmanagement.

Lernziele Kompetenzen
- Die Studierenden besitzen praktische Fertigkeiten im Umgang mit Qualitätsmanagementmethoden sowie bei der Anwendung von Qualitätswerkzeugen auch mit Blick auf betriebliche Kennzahlen. Sie können gezielt Qualitätsverbesserungsprozesse anstoßen und sich hierin einbringen.
- Die Studierenden können Prozesse analysieren und in geringem Umfang weiterentwickeln.
sie beherrschen die Grundzüge des Qualitätsmanagements. Sie können diesbezügliche Kundenanforderungen erkennen, bewerten und mit in- und externen Parteien hierzu kommunizieren.
- Die Studierenden sind in der Lage, einfache Prozesse und Kennzahlen zu beschreiben.

4 Lehr und Lernformen

Vorlesung (V)

5 Arbeitsaufwand und Credit Points

5 CP, Präsenzzeit 56 h, Selbststudium 94 h

6 Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Modulprüfung

Die Modulprüfung erfolgt als schriftliche Klausurprüfung gemäß § 12 und umfasst die Lehrveranstaltung
- Qualitätsmanagement UoWp

Wird die Modulprüfung als schriftliche Klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsdauer 0 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.

Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.

7 Notwendige Kenntnisse

8 Empfohlene Kenntnisse

- Prozess- und Projektmanagement.

9 Dauer, zeitliche Gliederung und Häufigkeit des Angebots

4 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat

10 Verwendbarkeit des Moduls

11 Literatur

Modul 9 Technical Controlling

<table>
<thead>
<tr>
<th>1</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Technical Controlling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.1</th>
<th>Modulkurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCO</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2</th>
<th>Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlpflichtmodul</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Controlling UoWp (TC.V)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.4</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Fachsemester</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.5</th>
<th>Modulverantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.6</th>
<th>Weitere Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weitere Lehrende nach aktueller Festlegung durch das Dekanat</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.7</th>
<th>Studiengangsniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.8</th>
<th>Lehrsprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutsch oder Englisch nach Ankündigung durch das Dekanat</td>
<td></td>
</tr>
</tbody>
</table>

Inhalt
- Verfahren des technischen Controllings, Methoden der Kostenstellenrechnung, Finanzstromanalyse, Assetbewertung, Ertragswertverfahren, Discounted Cashflow; Verfahren, Bewertung und Bewertungskompetenz, Auswahl des Bewerters, Kosten der Bewertung, Probleme der Unternehmensbewertung, Anwendungsbeispiele

Ziele
Lernziele Kenntnisse
- Absolventen verfügen insbesondere über vertiefte Kenntnisse in den betrieblichen Funktionen und Abläufen eines Unternehmens und hierbei insbes. des Controllings und der Controllingmethoden in einem Unternehmen.

Lernziele Fertigkeiten
- Die Absolventen können Methoden des technischen Controllings unterscheiden und verstehen deren Hintergründe, mit denen sie die Finanzströme und Assetts in den betrieblichen Funktionen und Abläufen eines Unternehmens abbilden.

Lernziele Kompetenzen
- Die Absolventen können ein technisches Controlling in einem Unternehmen nutzen und anwenden.
- Die Absolventen sind in der Lage das technische Controlling eines Unternehmens zu analysieren und zu bewerten.
- Die Studierenden sind in der Lage ein Unternehmen mit entsprechenden buchhalterischen und finanziellen Methoden zu kontrollieren und zu bewerten.
- Absolventen können ein technisches Controlling-System für ein Unternehmen gestalten und implementieren.

Lehr und Lernformen
Vorlesung [V]
<table>
<thead>
<tr>
<th>5</th>
<th>Arbeitsaufwand und Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 CP, Präsenzzeit 56 h, Selbststudium 94 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulprüfung</td>
</tr>
<tr>
<td></td>
<td>Die Modulprüfung erfolgt als schriftliche Klausurprüfung gemäß § 12 und umfasst die Lehrveranstaltung</td>
</tr>
<tr>
<td></td>
<td>– Technical Controlling UoWp</td>
</tr>
<tr>
<td></td>
<td>Wird die Modulprüfung als schriftliche Klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsdauer 0 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.</td>
</tr>
<tr>
<td></td>
<td>Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.</td>
</tr>
</tbody>
</table>

7	Notwendige Kenntnisse
8	Empfohlene Kenntnisse
9	Dauer, zeitliche Gliederung und Häufigkeit des Angebots
	4 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat

10	Verwendbarkeit des Moduls
11	Literatur
	– Kup, Alexander: Methoden der Unternehmensbewertung, Internationaler Vergleich kleiner und mittelgroßer Unternehmen, Hamburg 2007; Schacht, Ulrich; Fackler, Matthias: Praxishandbuch Unternehmensbewertung. Grundlagen, Methoden, Fallbeispiele; Wiehle, Ulrich; Diegelmann: Unternehmensbewertung: Methoden, Rechenbeispiel; Verwendet werden jeweils die neuesten Auflagen. Weitere Literaturhinweise werden in den Lehrveranstaltungen gegeben
Modul 10 Unternehmensbewertung

<table>
<thead>
<tr>
<th></th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unternehmensbewertung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.1</th>
<th>Modulkurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>UBW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2</th>
<th>Art</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wahlpflichtmodul</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unternehmensbewertung UoWp [UB.V]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.4</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3. Fachsemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.5</th>
<th>Modulverantwortliche Person</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulverantwortliche Person nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.6</th>
<th>Weitere Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weitere Lehrende nach aktueller Festlegung durch das Dekanat</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.7</th>
<th>Studiengangsniveau</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Master</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.8</th>
<th>Lehrsprache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deutsch oder Englisch nach Ankündigung durch das Dekanat</td>
</tr>
</tbody>
</table>

2 **Inhalt**

- Verfahren der Unternehmensbewertung: Substanzwertmethode, Liquidationswertverfahren, Stuttgarter Verfahren, Multiplikatorenmethode, Ertragswertverfahren, Discounted Cashflow Verfahren, Bewertung und Bewertungskompetenz, Auswahl des Bewerters, Kosten der Bewertung, Probleme der Unternehmensbewertung, Anwendungsbeispiele

3 **Ziele**

- Lernziele Kenntnisse
 - Absolventen verfügen insbesondere über vertiefte Kenntnisse in den betrieblichen Funktionen und Abläufen eines Unternehmens und der Unternehmensassets sowie deren Bewertung.

- Lernziele Fertigkeiten
 - Die Absolventen können Unternehmen und die entsprechenden Unternehmensbewertungen verstehen und veranschaulichen.

- Lernziele Kompetenzen
 - Die Absolventen sind in der Lage betriebswirtschaftliche Methoden bei der anwendungsorientierten Lösung der Fragestellungen von Unternehmensbewertungen einsetzen.
 - Die Absolventen können betriebswirtschaftliche Fragen und Problemstellungen anwendungsorientiert analysieren und lösen, die komplex definiert sind
 - Die Absolventen können Unternehmensbewertungen und deren Varianten unterscheiden, gegenüberstellen hinsichtlich ihrer Vor- und Nachteile und bewerten.
 - Die Absolventen sind in der Lage eine angepasste Unternehmensbewertung für ein Unternehmen zu gestalten.

4 **Lehr und Lernformen**

Vorlesung [V]

Die Dozentin oder der Dozent kann für die Lehrveranstaltungen des Moduls Anwesenheitspflicht festlegen.

Einsatz von wechselnden Medien nach den im Hörsaal, Seminarraum oder Laborraum gegebenen Möglichkeiten.
Arbeitsaufwand und Credit Points

5 CP, Präsenzzeit 56 h, Selbststudium 94 h

Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Modulprüfung

Die Modulprüfung erfolgt als schriftliche Klausurprüfung gemäß § 12 und umfasst die Lehrveranstaltung
- Unternehmensbewertung UoWp

Wird die Modulprüfung als schriftliche Klausurprüfung gemäß § 12 durchgeführt, ist die Regel-Prüfungsdauer 0 Minuten, wenn nicht in der ersten Woche der Vorlesungszeit durch die Dozentin oder den Dozenten eine andere Dauer gemäß §12 (1) ABPO bekannt gegeben wird.

Ausnahmen in der Prüfungsform gemäß §10 ABPO gibt die Dozentin oder der Dozent in der ersten Woche der Vorlesungszeit bekannt.

Notwendige Kenntnisse

Empfohlene Kenntnisse

Dauer, zeitliche Gliederung und Häufigkeit des Angebots

4 SWS, Häufigkeit des Angebotes nach Festlegung durch das Dekanat

Verwendbarkeit des Moduls

Literatur

- Praxishandbuch Unternehmensbewertung. Grundlagen, Methoden, Fallbeispiele; Wiehle, Ulrich; Diegelmann: Unternehmensbewertung: Methoden, Rechenbeispiel; Verwendet werden jeweils die neuesten Auflagen. Weitere Literaturhinweise werden in den Lehrveranstaltungen gegeben
Fremdmodule
MA03 (Advanced Feedback Control)

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module Name</th>
<th>Type</th>
<th>Course</th>
<th>Sem. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA03</td>
<td>Advanced Feedback Control</td>
<td>Compulsory</td>
<td>Adaptive and learning control</td>
<td>2.5 CP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>module for</td>
<td>Synthesis of dynamic systems using</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>major</td>
<td>state-space models</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>automation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Responsible and Instructor</td>
<td></td>
<td>Additional Instructor(s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weigl-Seitz</td>
<td></td>
<td>Schnell, Kleinmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Module content

 Content of course “Adaptive and learning control”
 The course covers the areas:
 - Formulation of the Adaptive Control Problem
 - Classification of Adaptive Control Systems
 - Digital Process Modelling and Online Identification using the RLS Method
 - Adaptation of Deadbeat Controllers and Controller Design by Pole Placement
 - Dynamic Behavior of Adaptive Control Loops and Configuration Issues
 - Motivation for Learning Control and Basic Structure of Learning Control Loops
 - Neural Networks as Memory Blocks for Controller and Process Model in Learning Control Loops
 - Computer based applications using Matlab/Simulink

 Content of course “Synthesis of dynamic systems using state-space models”
 This course covers the areas:
 - Modelling of dynamic systems using state variables
 - State space representation, canonical forms
 - Correlation between transfer functions and state space representation
 - Structural properties (stability, controllability, observability)
 - State space transformations
 - Solution of the time-invariant state-space equations
 - Design of state variable feedback controllers
 - Design of state variable observers
 - State feedback by optimal control
 - Computer based applications using Matlab/Simulink

2. Learning outcome / competencies

 The student achieves competencies in the above mentioned topics. Students will gain theoretical and practical knowledge on modern control engineering using state-space feedback control as well as adaptive and learning control.

3. Course organization and structure

 Class lecture and lab

4. Credits and work load

 7.5 CP, 225 hours total work load, 82.5 hours lectures and labs

5. Examination modalities

 Exam (Duration: 135 min) covering the complete content of the module at the end of the semester. A make-up exam will be offered during the following semester. Possible changes to the examination modalities may be communicated upon start of the module.

6. Prerequisites

 Prerequisite for attending the exam is the successful participation in the lab „Synthesis of dynamic systems using state-space models”.

7. Duration and frequency of course

 The module lasts one semester. It is offered in summer semester.

8. Applicability/utilization
The module is a mandatory module for the major Automation and an elective module for all other majors.
MA06 (Information and simulation systems in industrial development and automation)

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Module Name</th>
<th>Type</th>
<th>Course</th>
<th>Sem. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA06</td>
<td>Information and simulation systems in industrial development and automation</td>
<td>Elective module</td>
<td>Model-based real-time simulation of mechatronic systems 2,5 CP 2V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Information systems in industrial automation 5CP 3V/0,5L</td>
<td></td>
</tr>
</tbody>
</table>

Module Responsible and Instructor
Schnell

1. Module content

Content of course “Model-based real-time simulation of mechatronic systems”
This course provides an introduction to the concepts of model-based real-time simulation and system design.
The course covers the areas:
- Modelling and classification of mechatronic systems
- Application area, requirements
- Software and function development process
- Real-time simulation and rapid prototyping methods
- Hardware-in-the-loop, software-in-the-loop and processor-in-the-loop
- Automatic code generation
- Experimental validation and testing methods
- Summary, conclusion and future prospects

Content of course “Information systems in industrial automation”
This course provides an introduction to the concepts of information systems used in industrial automation. It covers the areas
- Enterprise management levels
- Manufacturing Execution Systems (tasks, aims and structures of MES)
- Data Acquisition (e. g. OPC-technologies)
- Data exchange to ERP-systems
- Data structures (XML in industrial automation, AutomationML)
- Summary, conclusion and future prospects

2. Learning outcome / competencies
The student achieves competencies in the above mentioned topics. The students learn the concepts of information systems in industrial automation. This includes the main software tools, the data structures and the data exchange methods between the different enterprise management levels.
Furthermore this module enables the students to model and simulate mechatronic systems. These models can be used to improve the design and implementation process, to improve the system’s documentation and maintainability and to support the system diagnosis. The students learn to simulate and test the systems using different testing methods.
Students will gain practical knowledge on modern engineering methods using model-based real-time simulation methods and tools.

3. Course organization and structure
Class lecture and lab

4. Credits and work load
7.5 CP, 225 hours total work load, 82.5 hours lectures and labs

5. Examination modalities
Exam (duration: 135 min) covering the complete content of the module at the end of the semester. A make-up exam will be offered during the following semester.
Possible changes to the examination modalities may be communicated upon start of the module.
6. Prerequisites
 Prerequisite for attending the exam is the successful participation in the lab „Information systems in industrial automation“ and „Model-based real-time simulation of mechatronic systems“.

7. Duration and frequency of course
 The module lasts one semester. It is offered in winter semester.

8. Applicability/utilization
 The module is applicable in all technical master courses (electrical/mechanical engineering, mechatronics, industrial engineering and management).
Requirements Engineering und Management

englischer Titel: Requirements Engineering and Management

Belegnummern: 41.4882 (PVL/Praktikum 41.4883; Modul 41.48820)

Sprache: deutsch

Zuordnung:
- Dualer Master 2013 AS
- Dualer Master 2013 vSE
- Master 2013 AS
- Master 2013 vSE

Lehrform: V+S+P

SWS: 2+1+1

CP: 6

Prüfung: mündliche Prüfung

PVL / Praktikum:
benotet (Erfolgreiche Teilnahme an Praktikum und Seminar; der benotete Seminarbeitrag geht mit 30 %, und das im Praktikum erarbeitete Pflichtenheft mit 20% in die Gesamtnote ein)

Anteil PVL: 50%

Häufigkeit des Angebots: jedes Sommersemester

Arbeitsaufwand:
- 64 h Präsenz + 48 h Vor- und Nachbereitung Vorlesung + 30h Seminarvorbereitung + 24 h Praktikumsverweildauer + 30h Prüfungsvorbereitung

Erforderliche Vorkenntnisse: Kenntnisse in UML

Lernziele: Die Studentin bzw. der Student ist nach Besuch der Veranstaltung in der Lage selbständig Systemanalysen durchzuführen, Pflichtenhefte zu erstellen, Changemanagement über den Software Lebenszyklus hinweg durchzuführen, Risikomanagement zu betreiben und Requirements Engineering als Prozeß einzuführen.

Lehrinhalte:

Vorlesung:
- Was ist Requirements Engineering
 - der Kontext und die Systemlösung
 - Kategorien von Requirements
 - Requirements Lifecycle
 - Requirements Engineering und der Software Lifecycle
 - Agile Prozesse und Requirements Engineering

 Domain Understanding und Requirements Sammlung
 - Identifikation von Stakeholdern
 - Artefakt getriebene Requirements Sammlung
 - Stakeholder getriebene Requirements Sammlung
 - Kreativitätstechniken
 - Requirements Evaluation
• Inkonsistenz Management
• Risikoanalyse

Requirements Spezifikation und Dokumentation
• Beschreibung in strukturiert er Sprache
• Diagramm basierte Notationen
• Formale Spezifikationen

Requirements Qualitätssicherung
• Inspektionen und Reviews
• Fragenkataloge
• Qualitätsmetriken
• Modellbildung und Prototyping
• Formale Methoden

Requirements Evolution
• Versionierung und Varianten
• Änderungen Vorhersehen
• Traceability
• Change Management

Goalorientierung
• was sind Goals
• Granularität von Goals
• Goal Typen und Katgorien
• die zentrale Rolle von Goals

System Modellierung
• Modellierung von System Zielen mit Goal Diagrammen
• Risikoa nalys e auf Goal Modellen
• Modellierung konzeptioneller Objekte mit Klasseendiagrammen
• Modellierung von System Agenten und Verantwortlichkeiten
• Modellierung von System Operationen
• Modellierung von System Verhalten
• Integration multipler Systemsichten

Einführungsstrategien für Requirements Management

Seminar:
• Risikomanagement und Kreativitätstechniken

Praktikum:
• Erstellung eines “Requirements and Specifications Document”
• Entwicklung eines System-Modells

Literatur:
• Requirements Engineering : Axel van Lamsweerde : John Wiley & Sons: 2009
• Requirements Engineering und Management : Chris Rupp & die SOPHISTen : Hanser : 2009
• Requirements Engineering : Klaus Pohl : dpunkt Verlag : 2008
• Capability Maturity Model Integration, Mary Beth Chrissis, Mike Konrad, Sandy Shrum: Addison Wesley : 2009
• Bärentango : Tom DeMarco, Timothy Lister : Hanser 2003
• Serious Creativity : Edward de Bono : Schäffer-Pöschel : 1996

Arbeitsformen / Hilfsmittel: Vorlesung mit Präsentation, White Board und Skript, Labor mit SW Engineering Software

Fachbereich: Informatik
Fachgruppe: Softwaretechnik
Lehrende: Raffius
Modulverantwortung: Gerhard Raffius
Freigabe ab: SS 2013
Fachliche Kompetenzen: Formale, algorithmische, mathematische Kompetenzen: schwach
• Analyse-, Design-, und Realisierungskompetenzen: hoch
• Technologische Kompetenzen: hoch (Anforderungsmanagement, Versionsmanagement, Risikomanagement, Changemanagement, Projektmanagement)
• Befähigung zum Wissenschaftlichen Arbeiten: schwach

Überfachliche Kompetenzen:
• Projektbezogene Kompetenzen: hoch
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Modellbildung, Simulation und Identifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kürzel</td>
<td>MSI</td>
</tr>
<tr>
<td>Modulnummer</td>
<td>BMe24Au</td>
</tr>
<tr>
<td>Lehrveranstaltung[en]</td>
<td>Modellbildung, Identifikation und Simulation</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>Pflichtveranstaltung der Vertiefung Automation, 5-tes Semester</td>
</tr>
<tr>
<td>Modulverantwortlicher[r]</td>
<td>Prof. Dr.-Ing. Kleinmann</td>
</tr>
<tr>
<td>Dozent[en]/Dozenten</td>
<td>Prof. Dr.-Ing. Kleinmann</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch oder Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>BA Mechatronik (B.Sc.) / Pflichtmodul</td>
</tr>
<tr>
<td>Lehrform / SWS</td>
<td>Vorlesung: 3 SWS</td>
</tr>
<tr>
<td></td>
<td>Praktikum: 1 SWS mit 12 Studenten pro Gruppe</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 4 SWS, gesamt 54 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 96 h</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5 LP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Prüfungsvoraussetzung: Anwesenheitspflicht und Leistungsnachweis nach Bekanntgabe durch den Dozenten im Praktikum</td>
</tr>
<tr>
<td>Empfohlene Vorkenntnisse</td>
<td>Systemtheorie (BMe16)</td>
</tr>
<tr>
<td></td>
<td>Regelungstechnik (BMe18)</td>
</tr>
<tr>
<td>Lernziele / Kompetenzen</td>
<td>Ziel des Moduls ist, den Studierenden grundlegende Kenntnisse und Fähigkeiten zur Modellbildung und Identifikation dynamischer Systeme zu vermitteln. Die Vorlesung soll den Studierenden folgende Kompetenzen vermitteln und die Studierenden in die Lage versetzen,</td>
</tr>
<tr>
<td></td>
<td>- ein dynamisches System anhand der beschreibenden physikalischen Gleichungen zu klassifizieren, das Systemmodell in Matlab/Simulink aufzubauen und das Systemverhalten zu simulieren</td>
</tr>
<tr>
<td></td>
<td>- für einfache Beispiele aus der Elektrotechnik, Mechanik und Verfahrenstechnik ohne Vorgabe der physikalischen Gleichungen ein dynamisches Systemmodell zu entwickeln</td>
</tr>
<tr>
<td></td>
<td>- die Bedeutung und Wirkungsweise der Parameter einer numerischen Simulation zu kennen und für einen vorgegebenen Simulationszweck sachgerecht einzustellen</td>
</tr>
<tr>
<td></td>
<td>- ein geeignetes experimentelles Identifikationsverfahren auszuwählen</td>
</tr>
<tr>
<td></td>
<td>- ein dynamisches Systemmodell anhand experimentell aufgenommener Ein-/Ausgangswerte zu erstellen (je nach Identifikationsverfahren ggf. unter Einsatz von Matlab/Simulink) und zu validieren</td>
</tr>
</tbody>
</table>

Inhalt
- Zweck der Modellbildung, Begriffe und Modellklassen
- Grundlagen der physikalisch-theoretischen Analyse dynamischer Systeme
- Modellierung ausgewählter linearer und nichtlinearer dynamischer Systeme aus den Bereichen Elektrotechnik, Mechanik und Verfahrenstechnik
- Simulation ausgewählter Modelle mit Matlab/Simulink
- Grundlagen der numerischen Simulation dynamischer Systeme
- Aufbau und Eigenschaften (Aufwand, Genauigkeit) ausgewählter numerischer Verfahren
- Repräsentation und Programmierung von Runge-Kutta-Verfahren
- Einordnung und Aufgaben der experimentellen Systemidentifikation
- Eigenschaften ausgewählter Identifikationsverfahren für dynamische Systeme
- Identifikation im Zeit-/Frequenzbereich mit deterministischen / stochastischen Signalen
- Grundlagen von LS-, RLS- und RLSef-Verfahren
<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen</th>
<th>Prüfungsleistung: Klausur 90 min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienform</td>
<td>Seminaristischer Unterricht</td>
</tr>
<tr>
<td></td>
<td>Tafel, Beamer</td>
</tr>
<tr>
<td>Literatur</td>
<td>Lutz/Wendt, Taschenbuch der Regelungstechnik</td>
</tr>
<tr>
<td></td>
<td>Kahlert, Simulation technischer Systeme</td>
</tr>
<tr>
<td>Medienform</td>
<td>Seminaristischer Unterricht Overhead, Beamer</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>Literatur</td>
<td>Martin Meyer: Grundlagen der Informationstechnik</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Starrkörperdynamik</td>
</tr>
<tr>
<td>Kürzel</td>
<td>KIN</td>
</tr>
<tr>
<td>Modulnummer</td>
<td>BMe24Ro</td>
</tr>
<tr>
<td>Lehrveranstaltung(en)</td>
<td>Starrkörperdynamik</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>Pflichtveranstaltung der Vertiefung Robotik, 5-tes Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
<td>Prof. Dr. T. Grönsfelder</td>
</tr>
<tr>
<td>Dozent(in)/Dozenten</td>
<td>Prof. Dr. T. Grönsfelder, Prof. Dr. J. Hammel, Prof. Dr. C. Jebens, Prof. Dr. H.-O. May, Prof. Dr. E. Nalepa, Prof. Dr. J. Neu, Prof. Dr. W. Ochs</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch oder Englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>BA Mechatronik (B.Sc.) / Pflichtmodul</td>
</tr>
<tr>
<td>Lehrform / SWS</td>
<td>Vorlesung: 4 SWS</td>
</tr>
<tr>
<td></td>
<td>Praktikum: 1 SWS mit je 13 Studenten pro Gruppe</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 5 SWS, gesamt: 52,5 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 97,5 h</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5 LP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsvoraussetzung</td>
<td>Anwesenheitspflicht und Leistungsnachweis nach Bekanntgabe durch den Dozenten im Praktikum</td>
</tr>
<tr>
<td>Empfohlene Vorkenntnisse</td>
<td>Mathematik (BMe01)</td>
</tr>
<tr>
<td></td>
<td>Physik (BMe04)</td>
</tr>
<tr>
<td></td>
<td>Technische Mechanik (BMe07)</td>
</tr>
<tr>
<td></td>
<td>Kinematik und Kinetik (BMe13)</td>
</tr>
<tr>
<td>Lernziele / Kompetenzen</td>
<td>Wissen und Verstehen</td>
</tr>
<tr>
<td></td>
<td>Absolventen/innen haben insbesondere</td>
</tr>
<tr>
<td></td>
<td>- grundlegende Kenntnisse über die Prinzipien und Methoden der klassischen Mechanik im Raum;</td>
</tr>
<tr>
<td></td>
<td>- vertiefte Kenntnisse über die Anwendung der Starrkörperdynamik auf die Fragestellungen der Roboterbewegung.</td>
</tr>
<tr>
<td></td>
<td>Ingenieurwissenschaftliche Methodik</td>
</tr>
<tr>
<td></td>
<td>Absolventen/innen sind insbesondere fähig,</td>
</tr>
<tr>
<td></td>
<td>- Frage- und Problemstellungen zur Starrkörperdynamik anwendungs-orientiert zu analysieren und zu bewerten;</td>
</tr>
<tr>
<td></td>
<td>- Ingenieurwissenschaftliche Methoden bei der anwendungsorientierten Lösung der Fragestellungen zu verstehen und deren Ergebnisse zu interpretieren.</td>
</tr>
<tr>
<td></td>
<td>Ingenieurgemäßes Entwickeln und Konstruieren</td>
</tr>
<tr>
<td></td>
<td>Absolventen/innen haben insbesondere</td>
</tr>
<tr>
<td></td>
<td>- die Fähigkeit, Lösungen zu anwendungsorientierten Fragestellungen zu entwickeln, unter besonderer Einbeziehung der Methodik der Starrkörperdynamik.</td>
</tr>
<tr>
<td></td>
<td>Untersuchen und Bewerten</td>
</tr>
<tr>
<td></td>
<td>Absolventen/innen sind insbesondere fähig,</td>
</tr>
<tr>
<td></td>
<td>- benötigte wissenschaftliche Informationen zur Starrkörperdynamik zu identifizieren, zu finden und zu beschaffen;</td>
</tr>
<tr>
<td></td>
<td>- Daten, Messungen und Berechnungsergebnisse kritisch zu bewerten, zu verdichten und daraus Schlüsse zu ziehen.</td>
</tr>
<tr>
<td></td>
<td>Ingenieurpraxis</td>
</tr>
<tr>
<td></td>
<td>Absolventen/innen sind insbesondere fähig,</td>
</tr>
<tr>
<td></td>
<td>- Wissen aus den unterschiedlichen Entwicklungsbereichen zu beurteilen und zu kombinieren;</td>
</tr>
<tr>
<td></td>
<td>- Konstruktionsmerkmale verantwortungsbewusst zu beurteilen;</td>
</tr>
</tbody>
</table>
das erworbene Fachwissen eigenverantwortlich zu vertiefen.

Schlüsselqualifikationen
Absolventen/innen sind insbesondere
- dazu befähigt, über ingenieurwissenschaftliche Fragestellungen und Probleme auf dem Gebiet der Anwendung von Starrkörperdynamik bei der Robotikentwicklung mit Fachkollegen zu kommunizieren;
- dazu befähigt, nichttechnische Kenntnisse und Fähigkeiten als fachübergreifende Kompetenz in die ingenieurtechnische Tätigkeit einzubringen;
- sich ihrer Verantwortung beim Handeln bewusst und kennen gesellschaftliche und berufsethische Grundsätze und arbeitswissen-

Inhalt

Vorlesung:
Kinematik der Starrkörperbewegung im Raum: Freiheitsgrade, Koordinatensysteme, Eulerwinkel, Geschwindigkeits- und Beschleunigungszustand, Bindungen.

Praktikum:
Simulation von Roboterproblemen (z.B. mit Maple, ADAMS, MATLAB, SIMULINK, usw.)

Studien-/Prüfungsleistungen
Prüfungsleistung: Klausur 120 min. oder mündliche Prüfung nach Bekanntgabe durch den Dozenten

Medienform
Seminaristischer Unterricht mit Overhead, Beamer, PC

Literatur
Magnus/Müller: Grundlagen der Technischen Mechanik, Teubner
F. Kuypers: Klassische Mechanik, Wiley
W. Weber: Industrieroboter, fv Leipzig