B11 (Grundlagen der Signal- und Systemtheorie <u>und</u> Regelungstechnik)

Bezeichnung Modul		Art	Lehrveranstaltungen	Sem. 3
B11	Grundlagen der Signal	Pflicht	Grundlagen der Signal- und	5 LP
	und -Systemtheorie <u>und</u>		Systemtheorie <u>und</u>	4 V
	Regelungstechnik		Regelungstechnik	
Modulverantwortliche(r)		weitere Lehrende		
Weigl-Seitz		Freitag, Schultheiß, Götze, Kleinmann, NN		

1. Inhalte

- Signalmodelle und Signalbeschreibungen
- Wichtige Signalformen
- Abtasttheorem
- Vertiefung und Anwendung der linearen Transformationen
- Mathematische Beschreibung einfacher zeitkontinuierlicher Systeme im Zeit- und Frequenzbereich (Linearität, Zeitinvarianz, Kausalität, Stabilität)
- Verknüpfung von Systemen
- Analyse und Beschreibung des statischen und dynamischen Verhaltens von LTI-Systemen
- Beispiele für Charakteristische Eigenschaften und Kennwerte elementarer LTI-Systeme (erster und zweiter Ordnung)
- Übertragungsverhalten der wichtigsten stetigen Regler
- Stabilität geschlossener Regelkreise (Hurwitz-Kriterium, Nyquist-Kriterium)
- Analyse des Verhaltens linearer Regelkreise (Stationäre Genauigkeit, Schnelligkeit und Dämpfung)
- Benutzung rechnergestützter Werkzeuge für die Simulation und Analyse dynamischer Systeme

2. Ziele

Die Studierenden beherrschen die Grundlagen der Signal- und Systemtheorie und Regelungstechnik.

3. Lehr- und Lernformen

Vorlesung

4. Leistungspunkte und Arbeitsaufwand

5 LP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsleistung in Form einer Klausur (Dauer: 90 min) über den Lehrinhalt des Moduls am Ende des Moduls.

Wiederholungsmöglichkeit für die Prüfungsleistung besteht jeweils zu Beginn des Folgesemesters.

6. Voraussetzungen

Fachliche Voraussetzungen: Mathematik (insbesondere komplexe Zahlen, Differentialgleichungen, Fourier-Reihen, Fourier-Transformation, Laplace-Transformation), Physik.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Das Modul erstreckt sich über ein Semester und wird im Wintersemester angeboten. Lehrveranstaltung "Grundlagen der Signal- und Systemtheorie": 8 SWS Vorlesung in der ersten Hälfte der Vorlesungszeit des Wintersemester (semesterbezogen 4 SWS).

8. Verwendbarkeit des Moduls

Das Modul vermittelt Basiswissen in Grundlagen der Signal- und Systemtheorie <u>und Regelungstechnik,</u> das für alle ingenieurwissenschaftlichen Studiengänge erforderlich ist.

B11 (Grundlagen der Systemtheorie und Regelungstechnik)

Bezeichnung	Modul	Art	Lehrveranstaltungen	Sem. 3	
	Grundlagen der Systemtheorie und Regelungstechnik		Grundlagen der Systemtheorie und Regelungstechnik	5 LP 4 V	
Modulverantwortliche(r)		weitere Lehrende			
Weigl-Seitz		Freitag, Schultheiß, Götze, Kleinmann, NN			

1. Inhalte

- Signalmodelle und Signalbeschreibungen
- Wichtige Signalformen
- Abtasttheorem
- Vertiefung und Anwendung der linearen Transformationen
- Mathematische Beschreibung einfacher zeitkontinuierlicher Systeme im Zeit- und Frequenzbereich (Linearität, Zeitinvarianz, Kausalität, Stabilität)
- Verknüpfung von Systemen
- Analyse und Beschreibung des statischen und dynamischen Verhaltens von LTI-Systemen
- Charakteristische Eigenschaften und Kennwerte elementarer LTI-Systeme
- Übertragungsverhalten der wichtigsten stetigen Regler
- Stabilität geschlossener Regelkreise (Hurwitz-Kriterium, Nyquist-Kriterium)
- Analyse des Verhaltens linearer Regelkreise (Stationäre Genauigkeit, Schnelligkeit und Dämpfung)
- Benutzung rechnergestützter Werkzeuge für die Simulation und Analyse dynamischer Systeme

2. Ziele

Die Studierenden beherrschen die Grundlagen der Systemtheorie und Regelungstechnik.

3. Lehr- und Lernformen

Vorlesung

4. Leistungspunkte und Arbeitsaufwand

5 LP, 150 Stunden insgesamt davon 60 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsleistung in Form einer Klausur (Dauer: 90 min) über den Lehrinhalt des Moduls am Ende des Moduls.

Wiederholungsmöglichkeit für die Prüfungsleistung besteht jeweils zu Beginn des Folgesemesters.

6. Voraussetzungen

Fachliche Voraussetzungen: Mathematik (insbesondere komplexe Zahlen, Differentialgleichungen, Fourier-Reihen, Fourier-Transformation, Laplace-Transformation), Physik.

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Das Modul erstreckt sich über ein Semester und wird im Wintersemester angeboten.

8. Verwendbarkeit des Moduls

Das Modul vermittelt Basiswissen in Grundlagen der Systemtheorie und Regelungstechnik, das für alle ingenieurwissenschaftlichen Studiengänge erforderlich ist.

Stand: 19.05.2009

BBPO-BE / Anlage 2

B12 (Schwerpunkte der Elektrotechnik)

Bezeichnung	Modul	Art	Lehrveranstaltungen	Sem. 3		
	Schwerpunkte der Elektrotechnik	Pflicht	Grundlagen der Automatisierungs – technik	2 V		
			Grundlagen der Telekommunikation	2 V	5 LP	
			Grundlagen der Energietechnik	2 V	1	
Modulverantwortliche(r)		weitere Lehrende				
Simons		Metz, Petry, Weigl-Seitz, Chen, Gerdes, Kuhn, Schmiedel				

1. Inhalte

Grundlagen der Automatisierungstechnik

- Aufgaben und Grundprinzipien der Automatisierungstechnik
- Einführung und Definition: Steuern, Regeln, Überwachen
- Modelle von Anlagen
- Überblick industrieller Automatisierungsgeräte (SPS, PLS, CNC)
- Einführung in das Arbeiten mit speicherprogrammierbaren Steuerungen (IEC61131, Verknüpfungssteuerungen, Ablaufsteuerungen, Entwurfsverfahren)
- Ausgewählte Beispiele aus der Automatisierungstechnik
- Ausblick auf Trends der Automatisierungstechnik

Grundlagen der Telekommunikation

- Einführung in die Nachrichtentechnik
- Signale, Daten und Information, lineare und logarithmische Maße
- RLC-Schwingkreis und grundlegende Filterschaltungen
- Modulationsverfahren (AM, FM und PM)
- Abtast-Theorem sowie PCM- und Zeitmultiplex-Technik
- Übertragungskanäle mit praktischen Anwendungen
- Rauschen und Verzerrungen von Signalen

Grundlagen der Energietechnik

- Zusammenhänge zwischen Energiebedarf, Ressourcen und Umweltauswirkungen global und für Deutschland.
- Energieerzeugungsanlagen: Kohlekraftwerk, Wasserkraftwerke und Regenerativen Kraftwerken.
- Arbeitsweise einer elektrischen Maschine (Synchronmaschine)
- Aufbau und Funktion der Übertragungs- und Verteilungsnetze mit Einführung in die Schutztechnik
- Drehstromsysteme und Einführungen in die elektrische Sicherheit und Schutztechnik.

2. Ziele

Ziel des Moduls ist, den Studierenden Grundlagen von wichtigen Teilgebieten der Elektrotechnik zu vermitteln.

3. Lehr- und Lernformen

Vorlesung

4. Leistungspunkte und Arbeitsaufwand

5 LP, 150 Stunden insgesamt davon 90 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsleistung in Form einer Klausur (Dauer: 120 min) über den gesamten Lehrinhalt des Moduls am Ende des Moduls.

Eine Wiederholungsmöglichkeit für die Prüfungsleistung besteht jeweils zu Beginn des Folgesemesters.

6. Voraussetzungen

Kenntnisse in

- Mathematik (insbesondere komplexe Zahlen, Differentialgleichungen, Laplace-Transformation)

- Grundlagen der Elektrotechnik

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Das Modul erstreckt sich über ein Semester und wird im Wintersemester angeboten.

8. Verwendbarkeit des Moduls

Das Modul vermittelt Basiswissen für verschiedene Schwerpunkte der Elektrotechnik und ist verwendbar für alle ingenieurwissenschaftlichen Studiengänge.

B12 (Schwerpunkte der Elektrotechnik)

Bezeichnung	Modul	Art	Lehrveranstaltungen	Sem. 3		
B12	Schwerpunkte der Elektrotechnik		Grundlagen der Automatisierungs – und Regelungs technik	2 V		
			Grundlagen der Telekommunikation	2 V	5 LP	
			Grundlagen der Energietechnik	2 V		
Modulverantwortliche(r) weitere		weitere Lehrend	tere Lehrende			
Simons		Pistor, Metz, Faber, Petry, Weigl-Seitz <u>, Chen, Gerdes, Kuhn, Schmiedel</u>				

1. Inhalte

Grundlagen der Automatisierungs- und Regelungstechnik

- Aufgaben und Grundprinzipien der Automatisierungstechnik Steuerungs- und Regelungstechnik
- Einführung und Definition: Steuern, Regeln, Überwachen
- Modelle von Anlagen
- Überblick industrieller Automatisierungsgeräte (SPS, PLS, CNC)
- <u>Einführung in das Arbeiten mit speicherprogrammierbaren Steuerungen (IEC61131,</u> Verknüpfungssteuerungen, Ablaufsteuerungen, Entwurfsverfahren)
- Übertragungsverhalten der wichtigsten stetigen Regler
- Analyse des Verhaltens linearer Regelkreise
- Stabilität geschlossener Regelkreise
- Ausgewählte Beispiele aus der Automatisierungstechnik-linearer Regelungen
- Benutzung rechnergestützter Werkzeuge für die Simulation und Analyse von Regelkreisen-
- Ausblick auf Trends der Automatisierungstechnik

Grundlagen der Telekommunikation

- Einführung in die Nachrichtentechnik
- Signale, Daten und Information, lineare und logarithmische Maße
- RLC-Schwingkreis und grundlegende Filterschaltungen
- Modulationsverfahren (AM, FM und PM)
- Abtast-Theorem sowie PCM- und Zeitmultiplex-Technik
- Übertragungskanäle mit praktischen Anwendungen
- Rauschen und Verzerrungen von Signalen

Grundlagen der Energietechnik

- Zusammenhänge zwischen Energiebedarf, Ressourcen und Umweltauswirkungen global und für Deutschland.
- Energieerzeugungsanlagen: Kohlekraftwerk, Wasserkraftwerke und Regenerativen Kraftwerken.
- Arbeitsweise einer elektrischen Maschine (Synchronmaschine)
- Aufbau und Funktion der Übertragungs- und Verteilungsnetze mit Einführung in die Schutztechnik
- Drehstromsysteme und Einführungen in die elektrische Sicherheit und Schutztechnik.

2. Ziele

Ziel des Moduls ist, den Studierenden Grundlagen von wichtigen Teilgebieten der Elektrotechnik zu vermitteln.

3. Lehr- und Lernformen

Vorlesung

4. Leistungspunkte und Arbeitsaufwand

5 LP, 150 Stunden insgesamt davon 90 Stunden Präsenzveranstaltungen.

5. Prüfungsform, Prüfungsdauer und Prüfungsvoraussetzung

Prüfungsleistung in Form einer Klausur (Dauer: 120 min) über den gesamten Lehrinhalt des Moduls am Ende des Moduls.

Eine Wiederholungsmöglichkeit für die Prüfungsleistung besteht jeweils zu Beginn des Folgesemesters.

6. Voraussetzungen

Kenntnisse in

- Mathematik (insbesondere komplexe Zahlen, Differentialgleichungen, Laplace-Transformation),
- Grundlagen der Systemtheorie, insbesondere die Beschreibung linearer zeitkontinuierlicher Systeme im Zeitbereich und im Frequenzbereich sowie das Übertragungsverhalten elementarer LTI Systeme (PT1, PT2 etc.)
- Grundlagen der Elektrotechnik

7. Dauer, zeitliche Gliederung und Häufigkeit des Angebots

Das Modul erstreckt sich über ein Semester und wird im Wintersemester angeboten.

Lehrveranstaltungen "Grundlagen der Automatisierungs- und Regelungstechnik", "Grundlagen der Telekommunikation", "Grundlagen der Energietechnik": jeweils 4 SWS Vorlesung als Blockveranstaltung in der zweiten Hälfte der Vorlesungszeit (semesterbezogen jeweils 2 SWS).

8. Verwendbarkeit des Moduls

Das Modul vermittelt Basiswissen für verschiedene Schwerpunkte der Elektrotechnik und ist verwendbar für alle ingenieurwissenschaftlichen Studiengänge.